10.若拋物線y2=2px,p>0的準(zhǔn)線過點(diǎn)(-1,2),則該拋物線的焦點(diǎn)坐標(biāo)是( 。
A.(-1,0)B.(0,-1)C.(1,0)D.(0,1)

分析 利用拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過點(diǎn)(-1,2),求得準(zhǔn)線方程為x=-1,即可求出拋物線焦點(diǎn)坐標(biāo).

解答 解:∵拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過點(diǎn)(-1,2),
∴準(zhǔn)線方程為x=-1,
∴該拋物線焦點(diǎn)坐標(biāo)為(1,0).
故選:C.

點(diǎn)評 本題考查拋物線焦點(diǎn)坐標(biāo),考查拋物線的性質(zhì),比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從1,3,5,7中任取2個數(shù)字,從0,2,4,6,8中任取2個數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),其中能被5整除的四位數(shù)共有(  )個.
A.192B.228C.300D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,則z=$\sqrt{3}$x+y的最大值為2$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-1≤x≤2},B={x|x-4≤0},則A∪B=( 。
A.{x|-1≤x<4}B.{x|2≤x<4}C.{x|x≥-1}D.{x|x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某車間為了規(guī)定工時定額,需要確定加工某零件所花費(fèi)的時間,為此做了四次實(shí)驗,得到的數(shù)據(jù)如表:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工6個零件需要多少時間?
(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某單位為了了解辦公樓的用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了四個工作日的用電量與當(dāng)天平均氣溫如表:
氣溫(℃)181310-1
用電量(度)24343864
(1)由表中數(shù)據(jù)求y與x的線性回歸方程(系數(shù)$\stackrel{∧}$取整數(shù));
(2)求貢獻(xiàn)率R2的值(保留小數(shù)點(diǎn)后兩位),并做出解釋.
附計算公式:$\widehat$$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\overline{y}$=$\widehat$$\overline{x}$+$\widehat{a}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x+a|-|x-2|.
(1)當(dāng)a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤|x-4|的解集包含[2,3],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若tanθ+$\frac{1}{tanθ}$=6,則sin2θ=( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點(diǎn)P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.

查看答案和解析>>

同步練習(xí)冊答案