15.已知數(shù)列{an}的前n項和為Sn且2Sn=n(n+1),
(1)求數(shù)列{an}的通項公式.
(2)若bn=$\frac{1}{{S}_{n}}$,求{bn}的前n項和Tn
(3)若Cn=2${\;}^{{a}_{n}}$,{Cn}的前n項和Rn,求滿足Rn≥2016的最小整數(shù)n.

分析 (1)由2Sn=n(n+1),利用遞推關(guān)系可得:n=1時,a1=1;n≥2時,an=Sn-Sn-1,即可得出.
(2)bn=$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,利用“裂項求和”方法即可得出:{bn}的前n項和Tn
(3)Cn=2${\;}^{{a}_{n}}$=2n,利用等比數(shù)列的求和公式即可得出:前n項和Rn,滿足Rn≥2016,轉(zhuǎn)化為:2n+1-2≥2016,即可得出.

解答 解:(1)∵2Sn=n(n+1),
∴n=1時,a1=1;n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n,
n=1時也成立,∴an=n.
(2)bn=$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴{bn}的前n項和Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
(3)Cn=2${\;}^{{a}_{n}}$=2n
∴數(shù)列{Cn}是等比數(shù)列,首項為2,公比為2,
其前n項和Rn=$\frac{2×({2}^{n}-1)}{2-1}$=2n+1-2,
滿足Rn≥2016,轉(zhuǎn)化為:2n+1-2≥2016,
210=1024,211=2048.
∴n+1=11,解得n=10.
∴滿足Rn≥2016的最小整數(shù)n=10.

點評 本題考查了遞推關(guān)系、等比數(shù)列的求和公式、“裂項求和”方法、不等式的解法、指數(shù)冪的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年04月13日“山東濟(jì)南非法經(jīng)營疫苗系列案件”披露后,引發(fā)社會高度關(guān)注,引起公眾、受種者和兒童家長對涉案疫苗安全性和有效性的擔(dān)憂.為采取后續(xù)處置措施提供依據(jù),保障受種者的健康,盡快恢復(fù)公眾接種疫苗的信心,科學(xué)嚴(yán)謹(jǐn)?shù)胤治錾姘敢呙缃臃N給受種者帶來的安全性風(fēng)險和是否有效,對某疫苗預(yù)防疾病的效果,進(jìn)行動物實驗,得到統(tǒng)計數(shù)據(jù)如表,現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為$\frac{2}{5}$.
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
未發(fā)病發(fā)病合計
未注射疫苗20xA
注射疫苗30yB
合計5050100
(2)繪制發(fā)病率的條形統(tǒng)計圖,并判斷疫苗是否有效?
(3)能夠有多大把握認(rèn)為疫苗有效?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.(文)二次函數(shù)y=x2+bx的圖象如圖,對稱軸為x=1.若關(guān)于x的二次方程x2+bx-t=0(為實數(shù))在-1<x<4的范圍內(nèi)有解,則t的取值范圍是( 。
A.-1≤t<3B.t≥-1C.3<t<8D.-1≤t<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓M:x2+(y-2)2=4,圓N:(x-1)2+(y-1)2=1,則圓M與圓N的位置關(guān)系是(  )
A.內(nèi)切B.相交C.外切D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,$\frac{π}{6}$]上單調(diào)遞增,在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào)遞減,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對具有線性相關(guān)關(guān)系的變量x,y有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…,8),其回歸直線方程是$\widehat{y}$=$\frac{1}{3}$x+$\widehat{a}$,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=8,請估算x=3時,y=$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=$\sqrt{x+1}$+lg(x-2)的定義域是(  )
A.[-1,+∞)B.(-∞,2)C.[1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線x+y=2與曲線(x-4)2+y2=a2(a>0)有且只有一個公共點,則a的值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,由函數(shù)f(x)=sinx與函數(shù)g(x)=cosx在區(qū)間$[{0,\frac{3π}{2}}]$上的圖象所圍成的封閉圖形的面積為2$\sqrt{2}$-1.

查看答案和解析>>

同步練習(xí)冊答案