7.函數(shù)y=$\sqrt{x+1}$+lg(x-2)的定義域是( 。
A.[-1,+∞)B.(-∞,2)C.[1,2)D.(2,+∞)

分析 根據(jù)函數(shù)y的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:∵函數(shù)y=$\sqrt{x+1}$+lg(x-2),
∴$\left\{\begin{array}{l}{x+1≥0}\\{x-2>0}\end{array}\right.$,
解得x>2,
∴函數(shù)y的定義域是(2,+∞).
故選:D.

點評 本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式-x2+2x+5<-2x的解集是(  )
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα=$\frac{1}{2}$,求tan2α,cot2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn且2Sn=n(n+1),
(1)求數(shù)列{an}的通項公式.
(2)若bn=$\frac{1}{{S}_{n}}$,求{bn}的前n項和Tn
(3)若Cn=2${\;}^{{a}_{n}}$,{Cn}的前n項和Rn,求滿足Rn≥2016的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合{a,b,c}={0,1,3},且下列三個關(guān)系:①a≠3;②b=3;③c≠0有且只有一個正確,則100a+10b+c的值為(  )
A.130B.103C.301D.310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求值${∫}_{2}^{4}$($\frac{1}{x}$+x)dx=ln2+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點分別為F1、F2,$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),其中A、B為雙曲線右支上的兩點.若在△AF1B中,∠F1AB=90°,|F1B|=$\sqrt{2}$|AB|,則雙曲線C的離心率的平方的值為( 。
A.5+2$\sqrt{2}$B.5-2$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從2名女生,4名男生中選2人參加某項活動,則抽到的2人恰好男生、女生都有的概率是$\frac{8}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t+1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))
(1)以原點O為極點,以x軸正半軸為極軸(與直角坐標(biāo)系xOy取相同的長度單位)建立極坐標(biāo)系,若點P的極坐標(biāo)為(4,$\frac{π}{3}$),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,利用曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差.

查看答案和解析>>

同步練習(xí)冊答案