【題目】已知函數(shù)有兩個不同的極值點.
(1)求的取值范圍.
(2)求的極大值與極小值之和的取值范圍.
(3)若,則是否有最小值?若有,求出最小值;若沒有,說明理由.
【答案】(1)(2)(3)沒有最小值.見解析
【解析】
(1)先求得函數(shù)的定義域和導函數(shù),結(jié)合一元二次方程根的分布求得的取值范圍.
(2)根據(jù)(1)求得,求得的表達式,并利用導數(shù)求得這個表達式的取值范圍.
(3)由(2)假設(shè),,則,求得的表達式,并利用導數(shù)研究這個表達式的單調(diào)性,由此判斷出這個表達式?jīng)]有最小值,也即沒有最小值.
(1)定義域為,.
因為有兩個不同的極值點,且,
所以有兩個不同的正根,,解得.
(2)因為,不妨設(shè),所以,,
所以
.
令,則,
所以在上單調(diào)遞增,所以,
即的極大值與極小值之和的取值范圍是.
(3)由(2)知.因為,
所以,
所以.
因為,所以
.
令,則,
所以在上單調(diào)遞減,無最小值,
故沒有最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為為參數(shù)),以原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線D的極坐標方程為.
(1)寫出曲線C的極坐標方程以及曲線D的直角坐標方程;
(2)若過點(極坐標)且傾斜角為的直線l與曲線C交于M,N兩點,弦MN的中點為P,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點在軸上,點在軸上,且.當點在軸上運動時,點的軌跡記為曲.
(Ⅰ)求曲線的軌跡方程;
(Ⅱ)過曲線上一點,作圓的切線,交曲線于兩點,若直線垂直于直線,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,長軸長為4,且過點.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與重合).設(shè)的外心為G,求證為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無癥狀感染者.基于目前的流行病學調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7天.為及時有效遏制病毒擴散和蔓延,減少新型冠狀病毒感染對公眾健康造成的危害,需要對與確診新冠肺炎病人接觸過的人員進行檢查.某地區(qū)對與確診患者有接觸史的1000名人員進行檢查,檢查結(jié)果統(tǒng)計如下:
發(fā)熱且咳嗽 | 發(fā)熱不咳嗽 | 咳嗽不發(fā)熱 | 不發(fā)熱也不咳嗽 | |
確診患病 | 200 | 150 | 80 | 30 |
確診未患病 | 150 | 150 | 120 | 120 |
(1)能否在犯錯率不超過0.001的情況下,認為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關(guān).
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.645 | 7.879 | 10.828 |
(2)在全國人民的共同努力下,尤其是全體醫(yī)護人員的辛勤付出下,我國的疫情得到較好控制,現(xiàn)階段防控重難點主要在境外輸入病例和無癥狀感染者(即無相關(guān)臨床表現(xiàn)但核酸檢測或血清特異性免疫球蛋白M抗體檢測陽者).根據(jù)防控要求,無癥狀感染者雖然還沒有最終確診患2019新冠肺炎,但與其密切接觸者仍然應當采取居家隔離醫(yī)學觀察14天,已知某人曾與無癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當天)的分布列以及數(shù)學期望值.(保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,正方形邊長為2,是的中點.
(1)求證:平面;
(2)求證:直線與平面所成角的正弦值為,求的長度;
(3)若,線段上是否存在一點,使平面,若存在求的長度,若不存在則說明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,P,Q,M,N,H,R是各條棱的中點.
①直線平面;②;③P,Q,H,R四點共面;④平面.其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,任意,不等式恒成立時最大的記為,當時,的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com