9.已知:全集U=R,集合A={x|4x>2},集合$B=\left\{{\left.x\right|}\right.\left.{\frac{x}{x+2}<0}\right\}$
(1)求A,B
(2)若M∪(A∪B)=R,且M∩(A∪B)=∅,求集合M.

分析 (1)根據(jù)指數(shù)的性質(zhì)求出A,根據(jù)解不等式求出集合B;(2)先求出A∪B,結(jié)合M和A∪B的關(guān)系,求出集合M即可.

解答 解:(1)集合A={x|4x>2}={x|2x>1}={x|x>$\frac{1}{2}$},
集合$B=\left\{{\left.x\right|}\right.\left.{\frac{x}{x+2}<0}\right\}$={x|x(x+2)<0}={x|-2<x<0};
(2)∵A∪B={x|x>$\frac{1}{2}$或-2<x<0},
M∪(A∪B)=R,且M∩(A∪B)=∅,
∴$M=(-∞,-2)∪[0,\frac{1}{2}]$.

點(diǎn)評 本題考查了集合的運(yùn)算性質(zhì),考查解不等式問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若斜率為k(k≠0)的直線l與雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1$相交于兩個(gè)不同的點(diǎn)M,N,且線段MN的中垂線與兩坐標(biāo)軸圍成的三角形的面積為$\frac{81}{2}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲線C,給出以下命題:
①曲線C不可能為圓;
②若1<t<4,則曲線C為橢圓;
③若曲線C為雙曲線,則t<1或t>4;
④若曲線C為焦點(diǎn)在x軸上的橢圓,則1<t<$\frac{5}{2}$.
其中真命題的序號(hào)是( 。
A.③④B.②③C.①④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.我校為了豐富同學(xué)們的課余生活,特舉辦了一次挑戰(zhàn)主持人大賽,如圖是七位評委為某選手打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A.4;4B.5;1.6C.84;4D.85;1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.橢圓經(jīng)過$A(\sqrt{3},-2)$,$B(-2\sqrt{3},1)$,則該橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)判定函數(shù)f(x)的奇偶性,并加以證明;
(2)判定f(x)的單調(diào)性(不用證明),并求不等式f(1-x)+f(3-2x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求適合下列各條件的直線的方程:
(1)自點(diǎn)P(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線與⊙C:(x-2)2+(y-2)2=1相切;
(2)直線過定點(diǎn)P(5,10)且與原點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.水是最常見的物質(zhì)之一,是包括人類在內(nèi)所有生命生存的重要資源,也是生物體最重要的組成部分,為了推動(dòng)對水資源迸行綜合性統(tǒng)籌規(guī)劃和管理,加強(qiáng)水資源保護(hù),解決日益嚴(yán)峻的淡水缺乏問題,開展廣泛的宣傳以提高公眾對開發(fā)和保護(hù)水資源的認(rèn)識(shí),中國水利部確定每年的3月22日至28日為“中國水周”,以提倡市民節(jié)約用水.某市統(tǒng)計(jì)局凋查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.將月用水量落人各組的頻率視為概率,并假設(shè)每天的用水量相互獨(dú)立.
(I)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)該地家庭的平均用水量;
(Ⅱ)求在未來連續(xù)3個(gè)月里,有連續(xù)2個(gè)月的月用水量都不低于12噸且另1個(gè)月的用水量低于4噸的概率;
(Ⅲ)用X表示在未來3個(gè)月里月用水量不低于12噸的月數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入t的值為5,則輸出的s的值為( 。
A.$\frac{9}{16}$B.$\frac{5}{4}$C.$\frac{21}{16}$D.$\frac{11}{8}$

查看答案和解析>>

同步練習(xí)冊答案