分析 設(shè)BC的中點(diǎn)為O,由$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,求得${\overrightarrow{AO}}^{2}$=$\frac{25}{4}$.再根據(jù)$\overrightarrow{AM}•\overrightarrow{AN}$=($\overrightarrow{AO}$+$\overrightarrow{OM}$)•($\overrightarrow{AO}$+$\overrightarrow{ON}$)=${\overrightarrow{AO}}^{2}$-${\overrightarrow{OM}}^{2}$,計(jì)算求得結(jié)果.
解答 解:如圖,設(shè)BC的中點(diǎn)為O,由$\overrightarrow{AB}$•$\overrightarrow{AC}$=4、|$\overrightarrow{BC}$|=3,
可得($\overrightarrow{AO}$+$\overrightarrow{OB}$)•($\overrightarrow{AO}$+$\overrightarrow{OC}$)=($\overrightarrow{AO}$+$\overrightarrow{OB}$)•($\overrightarrow{AO}$-$\overrightarrow{OB}$)=${\overrightarrow{AO}}^{2}$-${\overrightarrow{OB}}^{2}$=${\overrightarrow{AO}}^{2}$-${(\frac{3}{2})}^{2}$=4,
求得${\overrightarrow{AO}}^{2}$=$\frac{25}{4}$.
則$\overrightarrow{AM}•\overrightarrow{AN}$=($\overrightarrow{AO}$+$\overrightarrow{OM}$)•($\overrightarrow{AO}$+$\overrightarrow{ON}$)=($\overrightarrow{AO}$+$\overrightarrow{OM}$)•($\overrightarrow{AO}$-$\overrightarrow{OM}$)=${\overrightarrow{AO}}^{2}$-${\overrightarrow{OM}}^{2}$=$\frac{25}{4}$-${(\frac{1}{2})}^{2}$=6,
故答案為:6.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,考查了向量加法的三角形法則,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,+∞) | C. | (0,$\frac{2}{3}$] | D. | [$\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{4}$) | B. | (-∞,$\frac{1}{4}$) | C. | (0,$\frac{1}{4}$] | D. | (-∞,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$+cosα | ||
C. | $\frac{1}{2}$+cosα+cos3α | D. | $\frac{1}{2}$+cosα+cos3α+cos5α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1-($\frac{1}{3}$)5]3 | B. | [1-($\frac{1}{3}$)3]5 | C. | 1-[1-($\frac{2}{3}$)5]3 | D. | 1-[1-($\frac{2}{3}$)3]5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x<1} | B. | {x|0<x<1} | C. | {x|x>1} | D. | ∅ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com