A. | lnx0=$\frac{1}{{\sqrt{ab}}}$ | B. | lnx0≤$\frac{1}{{\sqrt{ab}}}$ | C. | lnx0≥$\frac{1}{{\sqrt{ab}}}$ | D. | lnx0<$\frac{1}{{\sqrt{ab}}}$ |
分析 猜想判斷l(xiāng)nx0<$\frac{1}{\sqrt{ab}}$,換元轉(zhuǎn)化為h(t)=2lnt-t+$\frac{1}{t}$,利用導數(shù)證明.
解答 解:由題知lnx0=$\frac{lnb-lna}{b-a}$,
猜想:lnx0<$\frac{1}{\sqrt{ab}}$,
證明如下:$\frac{lnb-lna}{b-a}$<$\frac{1}{\sqrt{ab}}$,
令t=$\sqrt{\frac{a}}$>1,原式等價于lnt2<t-$\frac{1}{t}$,
2lnt-t+$\frac{1}{t}$<0,
令h(t)=2lnt-t+$\frac{1}{t}$(t>1),
則h′(t)=$\frac{2}{t}$-1-$\frac{1}{{t}^{2}}$=-$\frac{{(t-1)}^{2}}{t}$<0,
∴h(t)=2lnt-t+$\frac{1}{t}$<h(1)=0,
得證lnx0<$\frac{1}{\sqrt{ab}}$,
故選:D.
點評 本題主要是在新定義下考查二次方程根的問題.在做關(guān)于新定義的題目時,一定要先認真的研究定義理解定義,再按定義做題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-2x+1 | B. | y=2x+1 | C. | y=-x+1 | D. | y=x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 5 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$i | C. | $\frac{\sqrt{5}}{5}$ | D. | -i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5,15,25,35,45 | B. | 25,45,65,85,100 | C. | 10,30,50,70,90 | D. | 23,33,45,53,63 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com