13.在平面直角坐標(biāo)系xOy中,將點(diǎn)A(2,1)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$到點(diǎn)B,若直線OB的傾斜角為α,則cosα的值為$\frac{\sqrt{10}}{10}$.

分析 設(shè)直線OA的傾斜角為θ,則tanθ=$\frac{1}{2}$,tanα=$tan(θ+\frac{π}{4})$=$\frac{1+tanθ}{1-tanθ}$,cosα=$\frac{1}{\sqrt{1+ta{n}^{2}α}}$.

解答 解:設(shè)直線OA的傾斜角為θ,則tanθ=$\frac{1}{2}$,
則tanα=$tan(θ+\frac{π}{4})$=$\frac{1+tanθ}{1-tanθ}$=$\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$=3,
∴cosα=$\frac{1}{\sqrt{1+ta{n}^{2}α}}$=$\frac{1}{\sqrt{1+{3}^{2}}}$=$\frac{\sqrt{10}}{10}$.
故答案為:$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題考查了直線的傾斜角與斜率的關(guān)系、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z滿足zi=1-i,則z的共軛復(fù)數(shù)是( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在復(fù)平面內(nèi),復(fù)數(shù)z1與z2對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且z1=-1+i,則z1z2=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(2,-1),則|z|=( 。
A.$\sqrt{5}$B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知隨機(jī)向量X服從正態(tài)分布N(3,1),且P(X>2c-1)=P(X<c+3),則c=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.寫出求函數(shù)y=2x+3圖象上任意一點(diǎn)到原點(diǎn)的距離的算法,并畫出相應(yīng)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)y=cos4x+sin2x-$\frac{7}{8}$(x∈R)圖象向右平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于原點(diǎn)對(duì)稱,則m的最小值為(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合{x,xy,lg(xy)}={0,|x|,y},則log8(x2+3y2)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求滿足下列條件的函數(shù)f(x)的解析式.
(1)函數(shù)f(x)滿足f($\sqrt{x}$+1)=x+2$\sqrt{x}$.
(2)函數(shù)f(x)滿足2f($\frac{1}{x}$)+f(x)=x(x≠0).
(3)若將(1)中條件“f($\sqrt{x}$+1)=x+2$\sqrt{x}$”變?yōu)椤癴(1+$\frac{1}{x}$)=$\frac{1+{x}^{2}}{{x}^{2}}$+$\frac{1}{x}$”,則f(x)的解析式是什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案