4.在△ABC中,已知sin(A-B)=-$\frac{3\sqrt{3}}{14}$,cos(π-B)=-$\frac{1}{2}$.
(1)求sinA;
(2)若角A,B,C的對(duì)邊分別為a,b,c且a=5,求b,c.

分析 (1)利用誘導(dǎo)公式可求cosB=$\frac{1}{2}$,由B∈(0,π),可得B,由已知A∈(0,π),A-B∈(-$\frac{π}{3}$,$\frac{2π}{3}$),可求cos(A-B),根據(jù)sinA=sin[(A-B)+B]即可求值.
(2)由(1)及正弦定理可得:b=$\frac{asinB}{sinA}$的值,利用同角三角函數(shù)關(guān)系式可求cosA,根據(jù)兩角和的正弦函數(shù)公式可求sinC,利用正弦定理即可求c的值.

解答 解:(1)∵cos(π-B)=-cosB=-$\frac{1}{2}$.解得:cosB=$\frac{1}{2}$,由于B∈(0,π),可得B=$\frac{π}{3}$.
∵sin(A-B)=-$\frac{3\sqrt{3}}{14}$,A∈(0,π),A-B∈(-$\frac{π}{3}$,$\frac{2π}{3}$),
∴cos(A-B)=$\sqrt{1-si{n}^{2}(A-B)}$=$\frac{13}{14}$,sinB=$\frac{\sqrt{3}}{2}$.
∴sinA=sin[(A-B)+B]=sin(A-B)cosB+cos(A-B)sinB=(-$\frac{3\sqrt{3}}{14}$)×$\frac{1}{2}$+$\frac{13}{14}$×$\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{14}$.
(2)由(1)及正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{5×\frac{\sqrt{3}}{2}}{\frac{5\sqrt{3}}{14}}$=7,
∵sin(A-B)=-$\frac{3\sqrt{3}}{14}$,A∈(0,π),A-B∈(-$\frac{π}{3}$,$\frac{2π}{3}$),A為銳角.
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{11}{14}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{5\sqrt{3}}{14}$×$\frac{1}{2}+$$\frac{11}{14}$×$\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{7}$,
∴c=$\frac{asinC}{sinA}$=$\frac{5×\frac{4\sqrt{3}}{7}}{\frac{5\sqrt{3}}{14}}$=8.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,兩角和的正弦函數(shù)公式,同角三角函數(shù)關(guān)系式,正弦定理的應(yīng)用,熟練掌握相關(guān)公式是解題的關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)y=$\left\{\begin{array}{l}{x+4,x≤0}\\{{x}^{2}-2x,0<x≤4}\\{-x+2,x>4}\end{array}\right.$,
求(1)f{f[f(5)]}的值;
(2)當(dāng)f(a)=3時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是某算法的程序框圖,則輸出的S=( 。
A.6B.27C.124D.604

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和,S11=$\frac{33}{4}$π,則tana6=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某樓盤開展套餐促銷優(yōu)惠活動(dòng),優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠2萬(wàn)元,選擇套餐二的客戶可獲得優(yōu)惠5萬(wàn)元,選擇套餐三的客戶可獲得優(yōu)惠3萬(wàn)元.根據(jù)以往的統(tǒng)計(jì)結(jié)果繪出參與活動(dòng)的統(tǒng)計(jì)圖如圖所示,現(xiàn)將頻率視為概率.
(1)求某兩客戶選擇同一套餐的概率;
(2)若用隨機(jī)變量ξ表示某兩客戶所獲優(yōu)惠金額的總和,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)判斷f(x)的奇偶性并說明理由;
(2)判斷f(x)在[0,+∞)上的單調(diào)性,并用定義證明;
(3)求滿足f(1-t)<f(t)的t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=3(x+2)(x-3)(x+4)+x的零點(diǎn)的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象過點(diǎn)(-2,$\frac{9}{4}$),求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若對(duì)任意x∈(0,1),不等式$\frac{x-m}{lnx}$>$\sqrt{x}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案