7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+\frac{3}{4},}&{x≥2}\\{lo{g}_{2}x,}&{0<x<2}\end{array}\right.$,若關(guān)于x的方程f(x)-k=0有且只有1個(gè)根,則實(shí)數(shù)k的取值范圍是k≤$\frac{3}{4}$或k=1.

分析 由題意可得函數(shù)f(x)的圖象與直線y=k有1個(gè)不同的交點(diǎn),結(jié)合圖象求出實(shí)數(shù)k的取值范圍.

解答 解:①當(dāng)x≥2時(shí),f(x)在[2,+∞)上單調(diào)遞減,且$\frac{3}{4}$<f(x)≤1;
②當(dāng)0<x<2時(shí),f(x)在(0,2)上單調(diào)遞增,且f(x)<1;
由g(x)=f(x)-k有且只有1個(gè)根可化為y=f(x)與y=k的1個(gè)交點(diǎn),
則k≤$\frac{3}{4}$或k=1.
故答案為:k≤$\frac{3}{4}$或k=1.

點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.計(jì)算:(xnex)′=nxn-1ex+xnex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=log2$\frac{x}{8}$•log2(2x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若$\frac{1}{8}$≤x≤4,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2sinx•cosx+2cos2x-1,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)求函數(shù)f(x)的最大值及f(x)取最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,}&{x<1}\\{4(x-a)(x-2a),}&{x≥1}\end{array}\right.$,若f(x)恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.a≥2B.$\frac{1}{2}$≤a<1C.$\frac{1}{2}$<a<1D.a≥2或$\frac{1}{2}$≤a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-2(2a-1)x+5a2-4a+2.
(1)求f(x)在區(qū)間[0,2]上的最大值;
(2)設(shè)f(x)在區(qū)間[0,2]上的最大值為g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m>2,n>0)在[$\frac{1}{2},2$]上單調(diào)遞減,則$\frac{1}{m}$+$\frac{1}{n}$的最小值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{6}$C.$\frac{3+2\sqrt{2}}{12}$D.$\frac{3-2\sqrt{2}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.f(x)=x2-2ax,當(dāng)a<1時(shí),對1<x1<x2,恒有|f(x1)-f(x2)|>2|x1-x2|,則實(shí)數(shù)a的取值范圍是a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,兩圓相交于A、B兩點(diǎn),P為兩圓公共弦AB上任一點(diǎn),從P引兩圓的切線PC、PD,若PC=2$\sqrt{2}$cm,則PD=2$\sqrt{2}$cm.

查看答案和解析>>

同步練習(xí)冊答案