分析 (1)設(shè)等差數(shù)列{an}的公差為d(d≠0),由a1,a2,a4成等比數(shù)列,可得$a_2^2={a_1}{a_4}$,即${({a_1}+d)^2}={a_1}({a_1}+3d)$,由${S_9}=9{a_1}+\frac{9×8}{2}d=90$,聯(lián)立解出即可得出.
(2)利用“裂項(xiàng)求和”即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d(d≠0),則a2=a1+d,a4=a1+3d,
由a1,a2,a4成等比數(shù)列,可得$a_2^2={a_1}{a_4}$,
即${({a_1}+d)^2}={a_1}({a_1}+3d)$,
整理,可得a1=d.
由${S_9}=9{a_1}+\frac{9×8}{2}d=90$,可得a1=d=2,
∴an=a1+(n-1)d=2n.
(2)由于an=2n,
所以${b_n}=\frac{1}{4n(n+1)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
從而${T_n}=\frac{1}{4}[(\frac{1}{1}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})]=\frac{1}{4}×\frac{n}{n+1}=\frac{n}{4n+4}$,
即數(shù)列{bn}的前n項(xiàng)和為${T_n}=\frac{n}{4n+4}$.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 53 | C. | 63 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恒為正 | B. | 等于零 | C. | 恒為負(fù) | D. | 不小于零 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 6 | D. | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com