分析 (1)連結(jié)OC,OC⊥AB,推導(dǎo)出OA=OB,OC⊥AB,由此能證明直線AB與⊙O相切.
(2)延長DO交⊙O于點(diǎn)F,連結(jié)FC,由弦切角定理得△ACD∽△AFC,從而$\frac{CD}{PC}$=$\frac{1}{3}$,由此能求出AO的長.
解答 證明:(1)∵AB∥DE,∴$\frac{OA}{OD}=\frac{OB}{OE}$,又OD=OE,∴OA=OB,
如圖,連結(jié)OC,∵AC=CB,∴OC⊥AB,
又點(diǎn)C在⊙O上,∴直線AB與⊙O相切.
解:(2)如圖,延長DO交⊙O于點(diǎn)F,連結(jié)FC,
由(1)知AB是⊙O的切線,∴弦切角∠ACD=∠F,
∴△ACD∽△AFC,∴tan∠ACD=tan∠F=$\frac{1}{3}$,
又∠DCF=90°,∴$\frac{CD}{PC}$=$\frac{1}{3}$,
∵AD=2,∴AC=6,
又AC2=AD•AF,∴2(2+2r)=62,∴r=8,
∴AO=2+8=10.
點(diǎn)評 本題考查線與圓相切的證明,考查線段長的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)的簡單運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{7}{9}$ | B. | $\frac{7}{9}$ | C. | $-\frac{8}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{64}+\frac{y^2}{57}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{64}-\frac{y^2}{57}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-2<0 | B. | ?x∈R,x2-2≤0 | ||
C. | ?x0∈R,x${\;}_{0}^{2}$-2<0 | D. | ?x0∈R,x${\;}_{0}^{2}$-2≤0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com