11.已知點F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)的左焦點,點E是該雙曲線的右頂點,過F且垂直于x軸的直線與雙曲線交于A,B兩點,若∠AEB為銳角,則該雙曲線的離心率e的取值范圍是(1,2).

分析 根據(jù)雙曲線的對稱性,得到等腰△ABE中,∠AEB為銳角,可得|AF|<|EF|,將此式轉(zhuǎn)化為關(guān)于a、c的不等式,化簡整理即可得到該雙曲線的離心率e的取值范圍.

解答 解:根據(jù)雙曲線的對稱性,
△ABE中,|AE|=|BE|,
∴△ABE是銳角三角形,即∠AEB為銳角,
由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|,
令x=-c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
即有|AF|=$\frac{^{2}}{a}$=$\frac{{c}^{2}-{a}^{2}}{a}$,|EF|=a+c,
∴$\frac{{c}^{2}-{a}^{2}}{a}$<a+c,即2a2+ac-c2>0,
兩邊都除以a2,得e2-e-2<0,解之得-1<e<2,
∵雙曲線的離心率e>1
∴該雙曲線的離心率e的取值范圍是(1,2).
故答案為:(1,2).

點評 本題給出雙曲線過一個焦點的通徑與另一個頂點構(gòu)成銳角三角形,求雙曲線離心率的范圍,著重考查了雙曲線的標(biāo)準方程與簡單幾何性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.畫出下列不等式組所表示的平面區(qū)域.
(1)$\left\{\begin{array}{l}{x-2y≤3}\\{x+y≤3}\\{x≥0}\\{y≥0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y<2}\\{2x+y≥1}\\{x+y<2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}+x,x≤0}\\{-1+lnx,x>0}\end{array}\right.$ 的零點個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{2}^{2}}$=1(a>0)的左、右焦點,P為雙曲線上的一點,若∠F1PF1=60°,則△F1PF2的面積是( 。
A.$\frac{4\sqrt{3}}{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一個頂點到較近焦點的距離為1,焦點到漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線與拋物線y=x2+2只有一個公共點,則該雙曲線的離心率為(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.離心率為2的雙曲線E的一個焦點到一條漸近線的距離為1,則E的標(biāo)準方程可以是( 。
A.3x2-y2=1B.$\frac{x^2}{3}-{y^2}$=1C.x2-3y2=1D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( 。
A.$(\frac{{\sqrt{6}+\sqrt{2}}}{2},+∞)$B.($\frac{\sqrt{5}+1}{2}$,$\frac{\sqrt{6}+\sqrt{2}}{2}$)C.$(\sqrt{6}+\sqrt{2},+∞)$D.$(1,\sqrt{6}+\sqrt{2})$

查看答案和解析>>

同步練習(xí)冊答案