精英家教網 > 高中數學 > 題目詳情
設二次函數f(x)=ax2+bx+c(a,b,c為常數)的導函數為f′(x).對任意x∈R,不等式f(x)≥f′(x)恒成立,則
b2
a2+c2
的最大值為
 
考點:二次函數的性質
專題:函數的性質及應用
分析:由已知可得ax2+(b-2a)x+(c-b)≥0恒成立,即△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,進而利用基本不等式可得
b2
a2+c2
的最大值.
解答: 解:∵f(x)=ax2+bx+c,
∴f′(x)=2ax+b,
∵對任意x∈R,不等式f(x)≥f′(x)恒成立,
∴ax2+bx+c≥2ax+b恒成立,
即ax2+(b-2a)x+(c-b)≥0恒成立,
故△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,
即b2≤4ac-4a2
∴4ac-4a2>0,
∴c>a>0,
c
a
-1>0
,
b2
a2+c2
4ac-4a2
a2+c2
=
c
a
-4
1+(
c
a
)
2
=
4×(
c
a
-1)
(
c
a
-1)
2
+2×(
c
a
-1)+2
=
4
(
c
a
-1)+
2
c
a
-1
+2
4
2
2
+2
=2
2
-2,
故答案為:2
2
-2
點評:本題考查的知識點是二次函數的性質,導函數,恒成立問題,最值,基本不等式,是函數方程不等式導數的綜合應用,難度大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求值:
(1)已知a+b=9,a2+b2=21,求ab.
(2)已知a+
1
a
=10,求a2+
1
a2
的值.
(3)已知a-
1
a
=3,求a2+
1
a2
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在正方體ABCD-A1B1C1D1中,過頂點A并與正方體的12條棱所在的直線所成的角均相等的一個平面是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-2lnx,h(x)=x2-x+a,若函數k(x)=f(x)-h(x)在區(qū)間[1,3]上恰有兩個不同的零點,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=
3-i
2+i
(i為虛數單位),則|z|的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三棱錐底面是正三角形,給出下列條件:
①三條側棱長相等;
②三個側面都是等腰三角形;
③三條側棱兩兩垂直;
④三個側面與底面所成角相等;
⑤三個側面都是等邊三角形.
其中使三棱錐成為正三棱錐的充要條件的有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC中,BC=1,AB=
3
,AC=
6
,點P是△ABC的外接圓上的一個動點,則
BP
BC
的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,a1=2,a4=5,則a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

隨機變量ξ~B(100,0.3),則D(2ξ-5)等于( 。
A、120B、84C、79D、42

查看答案和解析>>

同步練習冊答案