分析 在AB上取點(diǎn)F,使得AF=CD=2,連接CF,則可證明CF∥AD,EF∥PA,于是平面CEF∥平面PAD,故而CE∥平面PAD.
解答 證明:在AB上取點(diǎn)F,使得AF=CD=2,連接CF,則BF=1.
∵AF$\stackrel{∥}{=}$CD,∴四邊形AFCD是平行四邊形,
∴CF∥AD,又CF?平面PAD,AD?平面PAD,
∴CF∥平面PAD.
∵PE=2EB,
∴$\frac{BE}{PE}=\frac{BF}{AF}=\frac{1}{2}$,
∴EF∥PA,又EF?平面PAD,PA?平面PAD,
∴EF∥平面PAD,
又CF?平面CEF,EF?平面CEF,CF∩EF=F,
∴平面CEF∥平面PAD,
∵CE?平面CEF,
∴CE∥平面PAD.
點(diǎn)評(píng) 本題考了線(xiàn)面平行的判定與性質(zhì),構(gòu)造平行線(xiàn)是證明的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | x2+y2=1 | C. | y2=2x | D. | x2=2y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,2] | B. | [0,2] | C. | [1,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com