13.已知函數(shù)f(x)=|x-a|,不等式f(x)≤3的解集為[-1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)由f(x)≤3求解絕對(duì)值的不等式,結(jié)合不等式f(x)≤3的解集為[-1,5]列式求得實(shí)數(shù)a的值;
(Ⅱ)利用絕對(duì)值的不等式放縮得到f(x)+f(x+5)≥5,結(jié)合f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,即可求得實(shí)數(shù)m的取值范圍.

解答 解:(Ⅰ)由f(x)≤3,得|x-a|≤3,
∴a-3≤x≤a+3,
又f(x)≤3的解集為[-1,5].
∴$\left\{\begin{array}{l}{a-3=-1}\\{a+3=5}\end{array}\right.$,解得:a=2;
(Ⅱ)∵f(x)+f(x+5)=|x-2|+|x+3|≥|(x-2)-(x-3)|=5.
又f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,
∴m≤5.

點(diǎn)評(píng) 本題考查恒成立問(wèn)題,考查了絕對(duì)值不等式的解法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)數(shù)列{an}滿足an+1=2an,a1=1,數(shù)列{an}的前n項(xiàng)和為Sn,則S2015=(  )
A.22015-1B.22016-2C.22014-1D.1-22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.小明同學(xué)制作了一個(gè)簡(jiǎn)易的網(wǎng)球發(fā)射器,可用于幫忙練習(xí)定點(diǎn)接發(fā)球,如圖1所示,網(wǎng)球場(chǎng)前半?yún)^(qū)、后半?yún)^(qū)總長(zhǎng)為23.77米,球網(wǎng)的中間部分高度為0.914米,發(fā)射器固定安裝在后半?yún)^(qū)離球網(wǎng)底部8米處中軸線上,發(fā)射方向與球網(wǎng)底部所在直線垂直.
為計(jì)算方便,球場(chǎng)長(zhǎng)度和球網(wǎng)中間高度分別按24米和1米計(jì)算,發(fā)射器和網(wǎng)球大小均忽略不計(jì).如圖2所示,以發(fā)射器所在位置為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系xOy,x軸在地平面上的球場(chǎng)中軸線上,y軸垂直于地平面,單位長(zhǎng)度為1米.已知若不考慮球網(wǎng)的影響,網(wǎng)球發(fā)射后的軌跡在方程$y=\frac{1}{2}kx-\frac{1}{80}(1+{k^2}){x^2}(k>0)$表示的曲線上,其中k與發(fā)射方向有關(guān).發(fā)射器的射程是指網(wǎng)球落地點(diǎn)的橫坐標(biāo).
(Ⅰ)求發(fā)射器的最大射程;
(Ⅱ)請(qǐng)計(jì)算k在什么范圍內(nèi),發(fā)射器能將球發(fā)過(guò)網(wǎng)(即網(wǎng)球飛行到球網(wǎng)正上空時(shí),網(wǎng)球離地距離大于1米)?若發(fā)射器將網(wǎng)球發(fā)過(guò)球網(wǎng)后,在網(wǎng)球著地前,小明要想在前半?yún)^(qū)中軸線的正上空選擇一個(gè)離地面2.55米處的擊球點(diǎn)正好擊中網(wǎng)球,試問(wèn)擊球點(diǎn)的橫坐標(biāo)a最大為多少?并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.集合{x∈N|2≤x≤7}中元素的個(gè)數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.分別用文字語(yǔ)言、圖形語(yǔ)言和符號(hào)語(yǔ)言書(shū)寫(xiě)面面平行的判定定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.一個(gè)幾何體的三視圖如圖所示,其中正視圖是正三角形,則幾何體的外接球的表面積為$\frac{64π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=(x2-2ax+2)ex
(1)函數(shù)f(x)在x=0處的切線方程為2x+y+b=0,求a,b的值;
(2)當(dāng)a>0時(shí),若曲線y=f(x)上存在三條斜率為k的切線,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若曲線f(x)=3x+ax3在點(diǎn)(1,a+3)處的切線與直線y=6x平行,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的首項(xiàng)a1為常數(shù),且${a_{n+1}}={3^n}-2{a_n}(n∈{N_+})$.
(1)若${a_1}≠\frac{3}{5}$,證明:$\left\{{{a_n}-\frac{3^n}{5}}\right\}$是等比數(shù)列;
(2)若${a_1}=\frac{3}{2}$,{an}中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫(xiě)出這三項(xiàng),若不存在說(shuō)明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案