9.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若2x+y≥m2+7m恒成立,則實(shí)數(shù)m的取值范圍是[-8,1].

分析 先把2x+y轉(zhuǎn)化為(2x+y)($\frac{1}{x}$+$\frac{2}{y}$)展開后利用基本不等式求得其最小值,然后根據(jù)2x+y≥m2+7m恒成立求得m2+7m≤8,進(jìn)而求得m的范圍.

解答 解:∵$\frac{1}{x}$+$\frac{2}{y}$=1,
∴(2x+y)($\frac{1}{x}$+$\frac{2}{y}$)=4+$\frac{y}{x}$+$\frac{4x}{y}$≥4+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$=8,當(dāng)且僅當(dāng)x=2,y=4時(shí)取等號(hào),
∵2x+y≥m2+7m恒成立,
∴m2+7m≤8,解得-8≤m≤1,
故答案為:[-8,1].

點(diǎn)評(píng) 本題主要考查了基本不等式在最值問題中的應(yīng)用.考查了學(xué)生分析問題和解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等腰直角三角形ABC(直角邊長(zhǎng)為2)繞其直角邊旋轉(zhuǎn)一周所圍成幾何體的側(cè)面積為( 。
A.$4\sqrt{2}π$B.$8\sqrt{2}π$C.D.$4\sqrt{2}π+4π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱錐K-ABC中,平面KAC⊥平面ABC,KC⊥AC,AC⊥AB,H為KA的中點(diǎn),KC=AC=AB=2.
(Ⅰ)求證:CH⊥平面KAB;
(Ⅱ)求二面角H-BC-A的余弦值;
(Ⅲ)若M為AC中點(diǎn),在直線KB上是否存在點(diǎn)N使MN∥平面HBC,若存在,求出KN的長(zhǎng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)空間兩個(gè)單位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)與向量$\overrightarrow{OC}$=(1,1,1)的夾角都等于$\frac{π}{4}$,則cos∠AOB=( 。
A.$\frac{2-\sqrt{3}}{4}$B.$\frac{\sqrt{2}-\sqrt{6}}{4}$C.$\frac{2±\sqrt{3}}{4}$D.$\frac{\sqrt{2}±\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U=R,集合A={x|2<x<4},B={x|x2-x-6≤0},則A∩(∁UB)等于( 。
A.(1,2)B.(3,4)C.(1,3)D.(1,2)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a>0且a≠1,函數(shù)f(x)=loga(x-2a)+loga(x-3a)的定義域?yàn)閇a+3,a+4].
(1)討論函數(shù)f(x)的單凋性;
(2)若f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中,a1=2,an+1=an+$\frac{1}{3}$(n∈N*),則該數(shù)列的通項(xiàng)公式為:an=$\frac{n+5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.把函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象經(jīng)過變換,得到y(tǒng)=-2sin2x的圖象,這個(gè)變換是( 。
A.向左平移$\frac{5π}{12}$個(gè)單位B.向右平移$\frac{5π}{12}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.國(guó)家教育部為了發(fā)展貧困地區(qū)教育,在全國(guó)重點(diǎn)師范大學(xué)免費(fèi)培養(yǎng)教育專業(yè)師范生,畢業(yè)后要分到相應(yīng)的地區(qū)任教,現(xiàn)有6個(gè)免費(fèi)培養(yǎng)的教育專業(yè)師范畢業(yè)生要平均分到3所學(xué)校去任教,有90種不同的分派方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案