分析 根據(jù)圓心即AB的中點(diǎn)(-0.5,1.5),半徑為$\frac{1}{2}$AB=$\frac{\sqrt{10}}{2}$,從而得到以AB為直徑的圓的方程.
解答 解:由題意可得,圓心即AB的中點(diǎn)(-0.5,1.5),半徑為$\frac{1}{2}$AB=$\frac{\sqrt{10}}{2}$,
故以AB為直徑的圓的方程為 (x+0.5)2+(y-1.5)2=2.5,
故答案為:(x+0.5)2+(y-1.5)2=2.5.
點(diǎn)評(píng) 本題主要考查求圓的標(biāo)準(zhǔn)方程,求出圓心和半徑,是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [--4,$\frac{\sqrt{3}+1}{2}$] | B. | [-$\frac{\sqrt{3}+1}{2}$,$\frac{1-\sqrt{5}}{2}$] | C. | [-$\frac{\sqrt{3}+1}{2}$,$\frac{1+\sqrt{5}}{2}$] | D. | [-4,$\frac{1+\sqrt{5}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{3}$,$\sqrt{3}$) | B. | ($\sqrt{3}$,+∞) | C. | (-∞,-$\sqrt{3}$) | D. | [-2,$-\sqrt{3}$)∪($\sqrt{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com