14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥0}\\{f(-x),x<0}\end{array}\right.$,則f(log2$\frac{1}{6}$)=(  )
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

分析 利用分段函數(shù)的性質(zhì)和對(duì)數(shù)性質(zhì)及誘導(dǎo)公式求解.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥0}\\{f(-x),x<0}\end{array}\right.$,
∴f(log2$\frac{1}{6}$)=f(log26)=$(\frac{1}{2})^{lo{g}_{2}6}$=$(\frac{1}{2})^{lo{g}_{\frac{1}{2}}\frac{1}{6}}$=$\frac{1}{6}$.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)性質(zhì)和對(duì)數(shù)性質(zhì)及誘導(dǎo)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),如果對(duì)任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱(chēng)f(x)為k階伸縮函數(shù).
(Ⅰ)若函數(shù)f(x)為二階伸縮函數(shù),且當(dāng)x∈(1,2]時(shí),$f(x)=1+{log_{\frac{1}{3}}}x$,求$f(2\sqrt{3})$的值;
(Ⅱ)若函數(shù)f(x)為三階伸縮函數(shù),且當(dāng)x∈(1,3]時(shí),$f(x)=\sqrt{3x-{x^2}}$,求證:函數(shù)$y=f(x)-\sqrt{2}x$在(1,+∞)上無(wú)零點(diǎn);
(Ⅲ)若函數(shù)f(x)為k階伸縮函數(shù),且當(dāng)x∈(1,k]時(shí),f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N*)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,則u=$\frac{2x+3y}{x+y}$的取值范圍為$\frac{12}{5}$≤u≤$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知點(diǎn)$(a,\frac{1}{2})$在冪函數(shù)f(x)=(a-1)xb的圖象上,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.定義域內(nèi)的減函數(shù)D.定義域內(nèi)的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,已知a1=2,S9=54,若數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為$\frac{7}{16}$,則n=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且b=7,c=5,$B=\frac{2π}{3}$,則△ABC的面積是$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)A、B、C、D在同一球面上,AB=3,BC=4,AC=5,若四面體ABCD體積的最大值為10,則這個(gè)球的表面積為( 。
A.$\frac{25π}{4}$B.$\frac{125π}{4}$C.$\frac{225π}{16}$D.$\frac{625π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,在直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2$\sqrt{3}$,△ABC是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)P是線段BF上的一點(diǎn),PF=3.
(1)證明:FB⊥平面PAC;
(2)求異面直線PC與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}滿(mǎn)足an+2=an+1-an,且a1=2,a2=3,Sn為數(shù)列{an}的前n項(xiàng)和,則S2016的值為( 。
A.0B.2C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案