A. | 關(guān)于點(-2,0)對稱 | B. | 關(guān)于點(0,-2)對稱 | ||
C. | 關(guān)于直線x=-2對稱 | D. | 關(guān)于直線x=0對稱 |
分析 根據(jù)三角函數(shù)的平移變換求出g(x),通過圖象的對稱中點坐標(biāo)可得判斷.
解答 解:函數(shù)$f(x)=3sin({3x-\frac{π}{4}})$
令$3x-\frac{π}{4}=kπ$(k∈Z),
解得x=$\frac{kπ}{3}+\frac{π}{12}$
∴對稱中心坐標(biāo)是($\frac{k}{3}π+\frac{π}{12}$,0)
函數(shù)$f(x)=3sin({3x-\frac{π}{4}})$的圖象向左平移$\frac{π}{4}$個單位,再向下平移4個單位,可得g(x)=3sin(3x+$\frac{π}{2}$)-4
令3x+$\frac{π}{2}$=kπ(k∈Z),
解得x=$\frac{kπ}{3}-\frac{π}{6}$
∴對稱中心坐標(biāo)是($\frac{kπ}{3}-\frac{π}{6}$,-4)
對稱中心不相同,故C,D選項不對.
兩個函數(shù)對稱的縱坐標(biāo)為-2,故A不對.
故選B.
點評 本題主要考查了三角函數(shù)的圖象的平移變換后的對稱性的判斷.利用對稱中心或?qū)ΨQ軸即可判斷.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [9,13] | B. | (3,9) | C. | [9,+∞) | D. | (9,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\frac{1}{a}>\frac{1}$,則a<b | |
B. | 若命題$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,則?P為真命題 | |
C. | 已知命題p,q,“p為真命題”是“p∧q為真命題”的充要條件 | |
D. | 若f(x)為R上的偶函數(shù),則$\int_{-1}^1{f(x)dx}=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | [1,+∞) | C. | (-∞,0] | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3.1 | B. | 3.14 | C. | 3.15 | D. | 3.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com