9.用秦九韶算法計算多項式f(x)=2x6-2x5-x3+x2-2x+4,當(dāng)x=2時,求f(x)的值.

分析 把所給的多項式寫成關(guān)于x的一次函數(shù)的形式,依次寫出,得到最后結(jié)果,從里到外進行運算,得到要求的值.

解答 解:由秦九韶算法計算多項式f(x)=2x6-2x5-x3+x2-2x+4
=(((((2x-2)x+0)x-1)x+1)x-2)x+4.
∴當(dāng)x=2時的值時,
V0=2,V1=2,V2=4,V3=7,V4=15,V5=28,V6=60,
∴當(dāng)x=2時,f(x)=60.

點評 本題考查秦九韶算法,本題解題的關(guān)鍵是對多項式進行整理,得到符合條件的形式,不管是求計算結(jié)果還是求加法和減法的次數(shù)都可以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點P是直線l:y=2x+3上任一點,M(4,-1),則|PM|的最小值為$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知圓C1:x2+y2+4x=0,圓C2:x2+y2-4x-60=0,動圓 M和圓C1外切,和圓C2內(nèi)切,則動圓圓心M的軌跡方程為$\frac{x^2}{25}+\frac{y^2}{21}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校為了調(diào)查“學(xué)業(yè)水平考試”學(xué)生的數(shù)學(xué)成績,隨機地抽取該校甲、乙兩班各10名同學(xué),獲得的數(shù)據(jù)如下:(單位:分)
132108112121113121118127118129
133107120113122114125118129127
(1)以百位和十位為莖,個位為葉,在圖中作出甲、乙兩班學(xué)生數(shù)學(xué)成績的莖葉圖,并判列哪個班的平均水平較高;
(2)若數(shù)學(xué)成績不低于128分,稱為“優(yōu)秀”,求從甲班這10名學(xué)生中隨機選取3名,至多有1名“優(yōu)秀”的概率.
(3)以這20人的樣本數(shù)據(jù)來估計整個學(xué)校的總體成績,若從該校(人數(shù)很多)任選3人,記X表示抽到“優(yōu)秀”學(xué)生的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列命題:
①命題“?x∈k,cosx>0”的否定是“?x∈R,cosx≤0”
②函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(a>0$且a≠1)在R上是單調(diào)函數(shù)
③設(shè)f(x)是R上的任意函數(shù),則f(x)|f(-x)|是奇函數(shù),f(x)+f(-x)是偶函數(shù)
④定義在R上的函數(shù)f(x)對任意x的都有$f(x-2)=-\frac{4}{f(x)}$,則f(x)為周期函數(shù)
其中真命題的是①②④(把所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給定平面上四點O,A,B,C滿足OA=4,OB=2,OC=2,$\overrightarrow{OB}$•$\overrightarrow{OC}$=2,則△ABC面積的最大值為$\sqrt{3}+4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A={x∈Z|x2-x+b<0}只有一個子集,則b值范圍是(  )
A.[$\frac{1}{4}$,+∞)B.[0,+∞)C.($\frac{1}{4}$,+∞)D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}通項an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,則數(shù)列{bn}前n項和為(  )
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若無窮等比數(shù)列{an}的前n項和為Sn,首項為1,公比為a-1.5,且$\lim_{n→∞}{S_n}$=a,則a=2.

查看答案和解析>>

同步練習(xí)冊答案