1.已知雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1,A、B分別為其左、右頂點,P是雙曲線右支上位于x軸上方的動點,則kPA+kPB的取值范圍是(  )
A.[2,+∞)B.(2,+∞)C.[$\frac{5}{2}$,+∞)D.(1,+∞)

分析 根據(jù)雙曲線的方程求出A、B點的坐標,設(shè)點P(x0,y0),得到kPA+kPB=$\frac{{y}_{0}}{{x}_{0}+2}$+$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{x}_{0}}{2{y}_{0}}$=m,根據(jù)p的位置即可判斷m的范圍,即斜率的范圍.

解答 解:雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1,A、B分別為其左、右頂點(-2,0),(2,0),設(shè)點P(x0,y0),
根據(jù)點P是雙曲線左支上位于x軸上方的點,則$\frac{1}{4}$x02-y02=1,則x02-4=4y02,
∴kPA+kPB=$\frac{{y}_{0}}{{x}_{0}+2}$+$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}(2{x}_{0})}{{{x}_{0}}^{2}-4}$=$\frac{{x}_{0}}{2{y}_{0}}$=m,
則x0=2my0
∴(m-1)y02=1,
∴y02=$\frac{1}{m-1}$>0,
∴m>1,
故選:D

點評 本題借助于雙曲線中的一條動直線的斜率取值范圍問題,著重考查了雙曲線的簡單性質(zhì)和函數(shù)的值域與最值等知識點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1所示,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0),與y軸交與點C(0,-3).
(1)求拋物線的解析式;
(2)在BC下方的拋物線上是否存在點E,使△EBC的面積最大,如果存在,請求出最大面積及點E的坐標;如果不存在,請說明理由.
(3)如圖2所示,過點C作CP∥AB交拋物線與點P,在拋物線上是否存在點M,將線段PM繞點P旋轉(zhuǎn)90°后,點M恰好落在x軸上的點M1處,如果存在,請求出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.${∫}_{0}^{\frac{π}{2}}$(1-2sin2$\frac{x}{2}$)dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時,求集合A∪B,(∁RA)∩B;
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C中心在原點,長軸在x軸上,F(xiàn)1、F2為其左、右兩焦點,點P為橢圓C上一點,PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若傾斜角為45°的一動直線l與橢圓C相交于A、B兩點,求△AOB(O為坐標原點)面積的最大值及相應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)α是第一象限的角,作α的正弦線、余弦線和正切線,并證明下列各式:
(1)sin2α+cos2α=1;
(2)tanα=$\frac{sinα}{cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式(x+1)(x-2)>4的解集是{x|x<-2或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校為慶祝2012年國慶節(jié),安排了一場文藝演出,其中有3個舞蹈節(jié)目和4個小品節(jié)目,按下面要求安排節(jié)目單,有多少種方法:
(1)3個舞蹈節(jié)目互不相鄰;
(2)3個舞蹈節(jié)目和4個小品節(jié)目彼此相間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知方程x2+(2m+1)x+1=0有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案