8.已知b為如圖所示的程序框圖的輸出結(jié)果,則b=(  )
A.9B.7C.5D.4

分析 由題意,模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,b的值,當(dāng)a=5時不滿足條件a≤4,退出循環(huán),輸出b的值為9.

解答 解:由題意,模擬執(zhí)行程序,可得
a=1,b=1
滿足條件a≤4,b=3,a=2
滿足條件a≤4,b=5,a=3
滿足條件a≤4,b=7,a=4
滿足條件a≤4,b=9,a=5
不滿足條件a≤4,退出循環(huán),輸出b的值為9.
故選:A.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,正確依次寫出每次循環(huán)得到的a,b的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.△ABC與△DEF內(nèi)接于圓O,∠A,∠B,∠C,∠D的對邊分別為a、b、c、d,其中a=c=10$\sqrt{2}$,B=120°,D=45°,則d=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知($\frac{1}{x}$+y)(x+$\frac{a}{y}$)5的展開式中$\frac{{x}^{2}}{{y}^{2}}$的系數(shù)為20a,其中a≠0,則a的值為-2或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題“?x∈[-2,+∞),x+3≥l“的否定為( 。
A.?x0[-2,+∞),x0+3<1B.?x0[-2,+∞),x0+3≥lC.?x∈[-2,+∞),x+3<1D.?x∈(-∞,-2),x+3≥l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為空間三個向量,又$\overrightarrow{a}$,$\overrightarrow$是兩個相互垂直的單位向量,向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$|=3,$\overrightarrow{c}$$•\overrightarrow{a}$=2,$\overrightarrow{c}$•$\overrightarrow$=1,則對于任意實數(shù)x,y,|$\overrightarrow{c}$-x$\overrightarrow{a}$-y$\overrightarrow$|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出結(jié)果a的值為( 。
A.2B.$\frac{2}{3}$C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)P(x,y)滿足$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤4}\end{array}\right.$,點A(2,0),B(0,3),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,O是坐標(biāo)原點,則λ+μ的取值范圍是( 。
A.[2,4]B.[$\frac{5}{6}$,$\frac{11}{6}$]C.[$\frac{5}{6}$,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)=x2-bx-2.當(dāng)b=1,寫出函數(shù)y=|f(x)|單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在直角坐標(biāo)系中,已知點A(0,-2),B(2,2),C(-2,2)設(shè)M表示△ABC所所圍成的平面區(qū)域(含邊界),若對區(qū)域M的任意一點P(x,y)不等式ax+by≤2恒成立,其中a,b∈R,則以(a,b)為坐標(biāo)的點所形成的區(qū)域面積為4.

查看答案和解析>>

同步練習(xí)冊答案