19.已知在△ABC中,AC=2,BC=3,cosA=-$\frac{4}{5}$.
(Ⅰ)求sinB的值;
(Ⅱ)求AB的值.

分析 (Ⅰ)由cosA的值求出sinA的值,再由AC與BC的長,利用正弦定理求出sinB的值即可;
(Ⅱ)由余弦定理列出關(guān)系式,把AC,BC,cosA的值代入求出AB的長即可.

解答 解:(Ⅰ)∵在△ABC中,cosA=-$\frac{4}{5}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∵AC=2,BC=3,sinA=$\frac{3}{5}$,
∴由正弦定理$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,得sinB=$\frac{ACsinA}{BC}$=$\frac{2}{3}$×$\frac{3}{5}$=$\frac{2}{5}$;
(Ⅱ)∵AC=2,BC=3,cosA=-$\frac{4}{5}$,
∴由余弦定理,得BC2=AC2+AB2-2AC•AB•cosA,即9=4+AB2+$\frac{16}{5}$AB,
整理得:5AB2+16AB-25=0,
解得:AB=$\frac{-16±\sqrt{756}}{10}$,
則AB=$\frac{3\sqrt{21}-8}{5}$.

點(diǎn)評(píng) 此題考查了正弦、余弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)為可導(dǎo)函數(shù),且滿足$\underset{lim}{△x→0}\frac{f(1)-f(1-△x)}{△x}$=-1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為( 。
A.2B.-1C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,“sinA>cosB”是“△ABC為銳角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=a+|$\frac{{x}^{2}1}{x}$|-2${\;}^{|lo{g}_{2}x|}$,若x$∈[\frac{1}{2},4]$時(shí),f(x)≤0恒成立,則a的取值范圍為$a≤\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:$\frac{8!+{A}_{6}^{6}}{{A}_{8}^{2}-{A}_{10}^{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某班有50名同學(xué),一次數(shù)學(xué)考試的成績X服從正態(tài)分布N(105,102),已知p(95≤X≤105)=0.34,估計(jì)該班學(xué)生數(shù)學(xué)成績在115分以上的有8 人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)$\overrightarrow{p}$=(2,7),$\overrightarrow{q}$=(x,-3),則$\overrightarrow{p}$與$\overrightarrow{q}$的夾角為鈍角時(shí)x的取值范圍為x<$\frac{21}{2}$且x≠-$\frac{6}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直三棱柱ABC-A1B1C1中,D,E,F(xiàn)分別是BB1、AA1、AC的中點(diǎn),AC=BC,AB=$\sqrt{2}$AC.CD⊥C1D.
(Ⅰ)求證:CD∥平面BEF;
(Ⅱ)求證:平面BEF⊥平面A1C1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC中角A,B,C的對邊分別是a,b,c,滿足cosB=$\frac{4}{5}$,a=10,△ABC的面積為42,則$\frac{a}{sinA}$的值等于(  )
A.5$\sqrt{3}$B.10$\sqrt{3}$C.5$\sqrt{2}$D.10$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案