9.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f($\frac{π}{3}$)=0.

分析 根據(jù)圖象求出A,ω 和φ,即可求函數(shù)f(x)的解析式;即可求f($\frac{π}{3}$)的值.

解答 解:由題設(shè)圖象知,A=1,周期T=4($\frac{7π}{12}$-$\frac{π}{3}$)=π,
∴ω=$\frac{2π}{T}$=2.
∵點(diǎn)($\frac{7π}{12}$,-1)在函數(shù)圖象上,
∴sin(2×$\frac{7π}{12}$+φ)=-1.
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$.
∴函數(shù)f(x)=sin(2x+$\frac{π}{3}$),
那么:f($\frac{π}{3}$)=sinπ=0,
故答案為0

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=ax(a>0,a≠1)在[-2,1]上的最大值為4,最小值為m,且函數(shù)$g(x)=(1-4m)\sqrt{x}$在[0,+∞)上是減函數(shù),則a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①$f(x)=3-\frac{4}{x}$不可能是k型函數(shù);
②若函數(shù)$y=\frac{{({a^2}+a)x-1}}{{{a^2}x}}(a≠0)$是1型函數(shù),則n-m的最大值為$\frac{{2\sqrt{3}}}{3}$;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為$\frac{4}{9}$.
④若函數(shù)$y=-\frac{1}{2}{x^2}+x$是3型函數(shù),則m=-4,n=0;
其中正確的說法為②④.(填入所有正確說法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.小明家訂了一份報(bào)紙,送報(bào)人可能在早上6:30至7:30之間把報(bào)紙送到小明家,小明離開家去上學(xué)的時(shí)間在早上7:00至8:30之間,問小明在離開家前能得到報(bào)紙(稱為事件A)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-g(x),若函數(shù)F(x)的零點(diǎn)有且只有一個(gè),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)?x∈R都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2]且x1≠x2時(shí),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,給出下列命題:
(1)f(2)=0; 
(2)直線x=-4是函數(shù)y=f(x)圖象的一條對(duì)稱軸;
(3)函數(shù)y=f(x)在[-4,4]上有四個(gè)零點(diǎn);
(4)f(2012)=f(0)
其中所有正確命題的序號(hào)為(1)(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=3sin(x+\frac{π}{3})$的周期、振幅依次是( 。
A.2π,-3B.2π,3C.π,-3D.π,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{1-a}{2}$x2+ax-lnx(a∈R).
(1)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意a∈(3,4)及任意x1,x2∈[1,2],恒有$\frac{({a}^{2}-1)m}{2}$+ln2>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$z=\frac{a-i}{1+i}$為純虛數(shù),則a=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案