4.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,且$\overrightarrow{a}•\overrightarrow$=12,則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為( 。
A.$\frac{12}{5}$B.4C.$-\frac{12}{5}$D.-4

分析 根據(jù)向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影定義,計(jì)算即可.

解答 解:∵|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,且$\overrightarrow{a}•\overrightarrow$=12,
則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為
|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow$>=|$\overrightarrow{a}$|×$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|×|\overrightarrow|}$
=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$
=$\frac{12}{5}$.
故選:A.

點(diǎn)評 本題考查了求一向量在另一向量上的投影問題,解題時(shí)應(yīng)根據(jù)投影公式進(jìn)行計(jì)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知一扇形的圓心角是60°,弧長是π,則這個(gè)扇形的面積是( 。
A.B.$\frac{3π}{2}$C.D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f(α)=2,α∈[{\frac{π}{12},\frac{5π}{12}}]$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號為( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足|AP|=|PM|,NP⊥MA,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在F,H之間),且滿足$\overrightarrow{FG}=λ\overrightarrow{FH}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,則AD與平面AA1C1C所成的角的正弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要條件,則正實(shí)數(shù)λ的取值范圍是( 。
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a>0,b>0.若$\sqrt{3}$是3a與32b的等比中項(xiàng),則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知在映射f下,(x,y)的象是(x+y,x-y),則元素(3,1)的原象為( 。
A.(1,2)B.(2,1)C.(-1,2)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊答案