分析 利用正弦定理化簡已知,結(jié)合余弦定理,可得a2+b2-c2=$\frac{6\sqrt{7}}{7}$absinC=2abcosC,化簡可求tanC,利用同角三角函數(shù)基本關(guān)系式可求cosC,由余弦定理即可解得c的值.
解答 解:∵asinA+bsinB-csinC=$\frac{6\sqrt{7}}{7}$asinBsinC,
∴a2+b2-c2=$\frac{6\sqrt{7}}{7}$absinC=2abcosC,
∴$\frac{6\sqrt{7}}{7}$sinC=2cosC,可得:tanC=$\frac{2\sqrt{7}}{6}$,cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{3}{4}$,
∵a=3,b=2,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{9+4-{c}^{2}}{2×3×2}$=$\frac{3}{4}$,
∴解得:c=2.
故答案為:2.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+aq+…+aqn-1 | B. | $\frac{{a(1-{q^n})}}{1-q}$ | C. | a+aq+…+aqn | D. | $\frac{{a(1-{q^{n+1}})}}{1-q}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{11}$ | B. | $\frac{20}{21}$ | C. | $\frac{10}{21}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,4] | B. | [$\frac{5}{6}$,$\frac{11}{6}$] | C. | [$\frac{5}{6}$,2] | D. | [1,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com