分析 (1)利用誘導(dǎo)公式化簡已知可得f(α)=cosα,從而利用誘導(dǎo)公式可求α=-$\frac{13π}{3}$時(shí)f(α)的值;
(2)利用誘導(dǎo)公式可求sinα,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.
解答 解:(1)∵$f(α)=\frac{{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}=\frac{sinαcosαsinα}{(-sinα)(-sinα)}=cosα$,…..(6分)
∴$f(-\frac{13π}{3})=cos(-\frac{13π}{3})=cos(\frac{π}{3})=\frac{1}{2}…$(8分)
(2)∵$\begin{array}{l}cos(\frac{π}{2}-α)=\frac{3}{5}$,
∴$sinα=\frac{3}{5}\\∵α是第二象限角∴cosα=-\frac{4}{5}\\∴f(α)=cosα=-\frac{4}{5}…(10分)\end{array}$.
∵α為第二象限角,
∴f(α)=cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$…(10分)
點(diǎn)評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | -10 | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com