17.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知C1:ρ=2cosθ-4sinθ,C2:ρsinθ-2ρcosθ+1=0.
(Ⅰ)將C1的方程化為普通方程;
(Ⅱ)求曲線C1與C2兩交點之間的距離.

分析 (I)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可得出;
(II)由C2:ρsinθ-2ρcosθ+1=0,化為2x-y-1=0.求出圓心C1到直線的距離d.利用曲線C1與C2兩交點之間的距離=2$\sqrt{{r}^{2}-oaysgjh^{2}}$即可得出.

解答 解:(I)C1:ρ=2cosθ-4sinθ,∴ρ2=2ρcosθ-4ρsinθ,∴x2+y2=2x-4y,配方為(x-1)2+(y+2)2=5,可得圓心C1(1,-2),半徑r=$\sqrt{5}$.
(II)由C2:ρsinθ-2ρcosθ+1=0,化為y-2x+1=0,即2x-y-1=0.
∴圓心C1到直線的距離d=$\frac{|2-(-2)-1|}{\sqrt{{2}^{2}}+(-1)^{2}}$=$\frac{3\sqrt{5}}{5}$.
∴曲線C1與C2兩交點之間的距離=2$\sqrt{{r}^{2}-kpustwu^{2}}$=2$\sqrt{(\sqrt{5})^{2}-(\frac{3\sqrt{5}}{5})^{2}}$=$\frac{8\sqrt{5}}{5}$.

點評 本題考查了極坐標方程轉(zhuǎn)化為直角坐標方程、點到直線的距離公式、直線與圓的相交問題、弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5得數(shù)據(jù)如下表:
時間周一周二周三周四周五
車流量x(萬輛)5051545758
PM2.5的濃度y(微克/立方米)6970747879
(Ⅰ)根據(jù)上表數(shù)據(jù)求出y與x的線性回歸直線方程$\hat y=\hat bx+\hat a$,
(Ⅱ)若周六同一時間段車流量是25萬輛,試根據(jù)(Ⅰ)中求出的線性回歸方程預(yù)測此時PM2.5的濃度是多少?(保留整數(shù))
參考公式其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=-x2C.y=($\frac{1}{2}$)xD.y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(ωx+φ),ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,相鄰兩對稱軸間的距離為π,若將y=f(x)的圖象向右平移$\frac{π}{6}$個單位,所得的函數(shù)y=g(x)為奇函數(shù).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若關(guān)于x的方程2[g(x)]2-m[g(x)]+1=0在區(qū)間[0,$\frac{π}{2}$]上有兩個不相等的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.PA⊥矩形ABCD所在的平面,且AB=a,AD=b.問:在BC邊上是否存在一點E,使DE⊥平面PAE?若不存在,說明理由;若存在,求出恰有一點時E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若tanα+tanβ-tanαtanβ+1=0,α,β∈($\frac{π}{2},π$),則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知長為l(l≥1)的線段AB的兩個端點在拋物線y=x2上滑動,則線段AB的中點M到x軸的距離的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=f(x)的圖形如圖所示,給出y=f(x)與x=10和x軸所圍成圖形的面積估計值;要想得到誤差不超過1的面積估計值,可以怎么做?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在半徑為5cm的圓中,圓心角為圓周角的$\frac{2}{3}$的角所對的圓弧長為( 。
A.$\frac{4π}{3}$cmB.$\frac{20π}{3}$cmC.$\frac{10π}{3}$cmD.$\frac{50π}{3}$cm

查看答案和解析>>

同步練習(xí)冊答案