8.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=-x2C.y=($\frac{1}{2}$)xD.y=log2x

分析 可根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、反比例函數(shù)、二次函數(shù)的單調(diào)性逐項(xiàng)進(jìn)行檢驗(yàn),排除錯誤選項(xiàng)即可

解答 解:A:根據(jù)反比例函數(shù)的性質(zhì)可知該函數(shù)為單調(diào)遞減函數(shù),故A錯誤
   B:根據(jù)冪函數(shù)的性質(zhì)可知該函數(shù)在(0,+∞)為單調(diào)遞減函數(shù),故B錯誤,
   C:根據(jù)指數(shù)函數(shù)的性質(zhì)可知該函數(shù)為單調(diào)遞減函數(shù),故C錯誤
   D:根據(jù)對數(shù)函數(shù)的單調(diào)性可知該函數(shù)為單調(diào)遞增函數(shù),故D正確,
故選D.

點(diǎn)評 本題主要考查了常見函數(shù)的單調(diào)性的判斷,還要注意排除法在做選擇題中的應(yīng)用,屬于基礎(chǔ)試題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線x-y+a=0與圓心為C的圓x2+y2+2x-4y-4=0相交于A,B兩點(diǎn),且AC⊥BC,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若tanα=4,則$\frac{sinαsin(\frac{π}{2}-α)}{sin^2α+cos2α+cos^2α}$的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.利用計算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)x,則事件“3x-2≥0”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\sqrt{3}$sinωx-cosωx的圖象的一條對稱軸是x=$\frac{π}{3}$,則ω的取值可以是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知角α終邊上有一點(diǎn)P(-1,2),求下列各式的值.
(1)tanα;
(2)$\frac{sinα+cosα}{cosα-sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知C1:ρ=2cosθ-4sinθ,C2:ρsinθ-2ρcosθ+1=0.
(Ⅰ)將C1的方程化為普通方程;
(Ⅱ)求曲線C1與C2兩交點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.求(x-3y+2z)100展開式的各項(xiàng)系數(shù)之和為( 。
A.0B.1C.-1D.9100

查看答案和解析>>

同步練習(xí)冊答案