分析 (1)(2)根據(jù)圖象求出A,周期T,ω 和φ,以及函數(shù)f(x)的解析式;
(3)根據(jù)三角函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間.
解答 解:1)由圖象可知:振幅A=$\frac{2-(-2)}{2}=2$,
周期T=2×$[\frac{3π}{8}-(-\frac{π}{8})]$=π,
(2)由圖象可知:A=2,$ω=\frac{2π}{T}=2$,
∴函數(shù)y=2sin(2x+φ),
又∵點($-\frac{π}{8}$,2)在圖象上,
∴2=2sin($-\frac{π}{4}$+φ),
∵|φ|<π,
∴φ=$\frac{3π}{4}$
∴所求函數(shù)解析式為:y=2sin(2x+$\frac{3π}{4}$).
(3)由$2kπ-\frac{π}{2}≤2x+\frac{3π}{4}≤2kπ+\frac{π}{2}$,k∈Z.
可得:$-\frac{5π}{8}+kπ$≤x≤$kπ-\frac{π}{8}$,
∴函數(shù)的單調(diào)遞增區(qū)間為[$-\frac{5π}{8}+kπ$,$kπ-\frac{π}{8}$],k∈Z.
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,-12) | B. | (-$\frac{5}{13}$,$\frac{12}{13}$) | C. | ($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | ($\frac{5}{13}$,-$\frac{12}{13}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com