10.已知橢圓或雙曲線的兩個焦點為F1(-$\sqrt{5}$,0),F(xiàn)2($\sqrt{5}$,0),P是此曲線上的一點,且PF1⊥PF2,PF1•PF2=2,求該曲線的方程.

分析 由題意可知設PF1=m,PF2=n,$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=20}\\{mn=2}\end{array}\right.$,分曲線為橢圓時,求得m+n=2$\sqrt{6}$,2a=2$\sqrt{6}$,c=$\sqrt{5}$,b2=a2-c2,求得b2,即可求得橢圓方程,當曲線為雙曲線時,求得m-n=4,2a=4,c=$\sqrt{5}$,b2=c2-a2,求得b2,即可求得雙曲線方程.

解答 解:PF1=m,PF2=n,若是橢圓,方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
則$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=20}\\{mn=2}\end{array}\right.$,
解得m+n=2$\sqrt{6}$,2a=2$\sqrt{6}$,a=$\sqrt{6}$,c=$\sqrt{5}$,
b2=a2-c2,b2=1,
∴$\frac{{x}^{2}}{6}+{y}^{2}=1$,
若是雙曲線,方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,m>n,
則$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=20}\\{mn=2}\end{array}\right.$,解得m-n=4,2a=4,a=2,c=$\sqrt{5}$,
b2=c2-a2,b2=1
∴$\frac{{x}^{2}}{4}-{y}^{2}=1$,
綜上,方程為$\frac{{x}^{2}}{6}+{y}^{2}=1$或$\frac{{x}^{2}}{4}-{y}^{2}=1$.

點評 本題考查橢圓和雙曲線的方程及簡單性質(zhì),考察對圓錐曲線基礎知識的考查,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.在三棱柱ABC-A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1
(Ⅰ)求證:AC⊥平面AB1C1;
(Ⅱ)求二面角A1-BB1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若角α的余弦線長度為0,則它的正弦線的長度為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:?x0>0,2x0≥3,則¬p是( 。
A.$?x≤0{,_{\;}}{2^x}≥3$B.$?x≤0{,_{\;}}{2^x}<3$C.$?x>0{,_{\;}}{2^x}≤3$D.$?x>0{,_{\;}}{2^x}<3$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前10項和為30,它的前30項和為210,則前20項和為( 。
A.100B.120C.390D.540

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,位于A處的海面觀測站獲悉,在其正東方向相距40海里的B處有一艘漁船遇險,并在原地等待營救.在A處南偏西30°且相距20海里的C處有一艘救援船,該船接到觀測站通告后立即前往B處求助,則sin∠ACB=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}的前n項和為Sn,若an=$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n∈N*),則S2009的值為$\sqrt{2009}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,動物園要圍成四間相同面積的長方形虎籠,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成,設每間虎籠的長為xm,寬為ym,現(xiàn)有36m長的鋼筋網(wǎng)材料,為使每間虎籠面積最大,則$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.計算:(${lg\frac{1}{25}$-lg4)÷${100^{-\frac{1}{2}}}$的值為-20.

查看答案和解析>>

同步練習冊答案