相關(guān)習(xí)題
 0  206031  206039  206045  206049  206055  206057  206061  206067  206069  206075  206081  206085  206087  206091  206097  206099  206105  206109  206111  206115  206117  206121  206123  206125  206126  206127  206129  206130  206131  206133  206135  206139  206141  206145  206147  206151  206157  206159  206165  206169  206171  206175  206181  206187  206189  206195  206199  206201  206207  206211  206217  206225  266669 

科目: 來源: 題型:

一個彈簧在掛4kg的物體時,長20cm,在彈性限度內(nèi),所掛物體的重量每增加1kg,彈簧伸長1.5cm.寫出彈簧的長度y(cm)與所掛物體重量x(kg)之間關(guān)系的方程.

查看答案和解析>>

科目: 來源: 題型:

“水”這個曾經(jīng)人認(rèn)為取之不盡用之不竭的資源,竟然到了嚴(yán)重制約我國經(jīng)濟(jì)發(fā)展,嚴(yán)重影響人民生活的程度.因?yàn)槿彼磕杲o我國工業(yè)造成的損失達(dá)2000億元,給我國農(nóng)業(yè)造成的損失達(dá)1500億元,嚴(yán)重缺水困擾全國三分之二的城市.為了節(jié)約用水,某市打算出臺一項(xiàng)水費(fèi)政策,規(guī)定每季度每人用水量不超過5噸時,每噸水費(fèi)1.2元,若超過5噸而不超過6噸時,超過的部分的水費(fèi)加收200%,若超過6噸而不超過7噸時,超過部分的水費(fèi)加收400%,如果某人本季度實(shí)際用水量為x(x≤7)噸,應(yīng)交水費(fèi)為f(x).
(1)試求出函數(shù)f(x)的解析式;
(2)若本季度他交了12.6元,求他本季度實(shí)際用水多少噸?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=log2
2x-1
2x+2
,
1)判斷函數(shù)f(x)的單調(diào)性;
2)當(dāng)x∈[1,2]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知x>-1,y>-1且(x+1)(y+1)=4,則x+y最小值為
 

查看答案和解析>>

科目: 來源: 題型:

閱讀:已知a,b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.
解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,當(dāng)且僅當(dāng)
b
a
=
2a
b
,即a=
2
-1,b=2-
2
時取到等號,則y=
1
a
+
2
b
的最小值為3+2
2

應(yīng)用上述解法,求解下列問題:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函數(shù)y=
1
x
+
8
1-2x
的最小值.

查看答案和解析>>

科目: 來源: 題型:

若函數(shù)f(x)=-
1
2
x2
+bx+1在[-1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=|x-4|-t,t∈R,且關(guān)于x的不等式f(x+2)≤2的解集為[-1,5].
(1)求t值;
(2)a,b,c均為正實(shí)數(shù),且a+b+c=t,求證:
a2
b
+
b2
c
+
c2
a
≥1.

查看答案和解析>>

科目: 來源: 題型:

方程x2-|x|+a-1=0有四個相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)P(Sn,an)在直線(3-m)x+2my-m-3=0(m∈N+,m≠3)上
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=3,bn=
3
2
f(bn-1)(n∈N+,n≥2),求證:{
1
bn
}為等差數(shù)列,并求通項(xiàng)bn
(3)若m=1,Cn=
an
bn
,Tn為數(shù)列{Cn}的前n項(xiàng)和,求Tn的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知兩點(diǎn)A(cosα,sinα)和B(cos2α,sin2α),則AB的長為( 。
A、2sin
α
2
B、2|sin
α
2
|
C、2cos
α
2
D、2|cos
α
2
|

查看答案和解析>>

同步練習(xí)冊答案