相關(guān)習(xí)題
 0  225351  225359  225365  225369  225375  225377  225381  225387  225389  225395  225401  225405  225407  225411  225417  225419  225425  225429  225431  225435  225437  225441  225443  225445  225446  225447  225449  225450  225451  225453  225455  225459  225461  225465  225467  225471  225477  225479  225485  225489  225491  225495  225501  225507  225509  225515  225519  225521  225527  225531  225537  225545  266669 

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)$f(x)={log_2}({x^2}-x)$,g(x)=log2(2x-2).
(1)求f(x)的定義域;
(2)求不等式f(x)>g(x)的解集.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.(1)求值:$lg5+lg2+{({\frac{3}{5}})^0}+ln{e^{\frac{1}{2}}}$(其中e為自然對(duì)數(shù)的底數(shù));
(2)已知cosα=$\frac{{2\sqrt{2}}}{3},\;sin(α+β)=\frac{1}{3},\;α∈(0,\frac{π}{2}),\;β∈(\frac{π}{2},π)$,求cosβ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象與直線y=m(-A<m<0)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是3,5,9,則f(x)的單調(diào)遞增區(qū)間是(  )
A.[6kπ+1,6kπ+4],k∈ZB.[6k-2,6k+1],k∈ZC.[6k+1,6k+4],k∈ZD.[6kπ-2,6kπ+1],k∈Z

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.已知冪函數(shù)f(x)=xm-1(m∈Z,其中Z為整數(shù)集)是奇函數(shù).則“m=4”是“f(x)在(0,+∞)上為單調(diào)遞增函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.已知函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則此函數(shù)的解析式為( 。
A.$y=2sin(\frac{x}{2}-\frac{π}{6})$B.$y=2sin(4x+\frac{π}{4})$C.$y=2sin(\frac{x}{2}+\frac{π}{6})$D.$y=2sin(4x+\frac{π}{6})$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.求值:
$(1){(-{3^{-\frac{2}{3}}}×{27^{\frac{1}{3}}})^2}+{log_3}\frac{1}{9}$=$\root{3}{9}-1$;
(2)若|2x-1|+(y-2)2=0,則lg(xy)0.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.求經(jīng)過(guò)原點(diǎn),且過(guò)(-2,3),(-4,1)兩點(diǎn)的圓的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.關(guān)于下列命題:
①存在角α滿足$sinα+cosα=\frac{3}{2}$
②函數(shù)$y=cos2({\frac{π}{4}-x})$是偶函數(shù);
③函數(shù)$f(x)=4sin({2x+\frac{π}{3}})$關(guān)于直線$x=-\frac{5π}{12}$對(duì)稱
④函數(shù)$f(x)=4sin({2x+\frac{π}{3}})$可改寫為$f(x)=4cos({2x-\frac{π}{6}})$
寫出所有正確的命題的題號(hào):③④ (注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=2sin({x-\frac{π}{6}}),x∈R$,若f(x)≥1,則x的取值范圍是( 。
A.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+π,k∈Z}\right\}$B.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$
C.$\left\{{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$D.$\left\{{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z}\right\}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.若A={x|x+1>0},B={x|x-3<0},則A∩B等于( 。
A.{x|x>-1}B.{x|x<3}C.{x|-1<x<3}D.{x|1<x<3}

查看答案和解析>>

同步練習(xí)冊(cè)答案