相關(guān)習(xí)題
 0  225514  225522  225528  225532  225538  225540  225544  225550  225552  225558  225564  225568  225570  225574  225580  225582  225588  225592  225594  225598  225600  225604  225606  225608  225609  225610  225612  225613  225614  225616  225618  225622  225624  225628  225630  225634  225640  225642  225648  225652  225654  225658  225664  225670  225672  225678  225682  225684  225690  225694  225700  225708  266669 

科目: 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\frac{\sqrt{3}cosB}$=$\frac{a}{sinA}$,則cosB=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}滿足:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anan+1,Sn為數(shù)列{bn}的前n項(xiàng)和,對(duì)于任意的正整數(shù)n,Sn>2λ-$\frac{1}{3}$恒成立,求Sn及實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{2a+b}{c}$=$\frac{cos(π-B)}{cosC}$.
(1)求角C的大;
(2)若c=2,且ab=$\frac{4}{3}$,求證:sinA=sinB.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知f(x)對(duì)任意x∈[0,+∞)都有f(x+1)=-f(x),且當(dāng)x∈[0,1)時(shí),f(x)=x,若函數(shù)g(x)=f(x)-loga(x+1)(0<a<1)在區(qū)間[0,4]上有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{1}{4}$,$\frac{1}{3}$]B.[$\frac{1}{4}$,$\frac{1}{3}$)C.[$\frac{1}{5}$,$\frac{1}{3}$)D.[$\frac{1}{5}$,$\frac{1}{3}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

9.矩形ABCD中,AB=2$\sqrt{3}$,AD=2,點(diǎn)E為線段BC的中點(diǎn),點(diǎn)F為線段CD上的動(dòng)點(diǎn),則$\overrightarrow{AE}$$•\overrightarrow{AF}$的取值范圍是( 。
A.[2,14]B.[0,12]C.[0,6]D.[2,8]

查看答案和解析>>

科目: 來源: 題型:選擇題

8.要得到函數(shù)y=cos(3x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=sin3x的圖象( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{4}$個(gè)單位D.向左平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目: 來源: 題型:選擇題

7.下列函數(shù)中,不是偶函數(shù)的是( 。
A.y=x2+4B.y=|tanx|C.y=cos2xD.y=3x-3-x

查看答案和解析>>

科目: 來源: 題型:解答題

6.一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率是$\frac{2}{5}$;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是$\frac{7}{9}$.
(Ⅰ)若袋中共有10個(gè)球,
(i)求白球的個(gè)數(shù);
(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于$\frac{7}{10}$.并指出袋中哪種顏色的球個(gè)數(shù)最少.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=a(a>0),該數(shù)列的前n項(xiàng)和為Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
(Ⅱ)設(shè)bn=$\frac{1}{{S}_{n}}$,cn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Cn分別為數(shù)列{bn},{cn}的前n項(xiàng)和,當(dāng)n≥2時(shí),試比較Bn與Cn的大。

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f1(x)=$\frac{lg(1-{x}^{2})}{|{x}^{2}-2|-2}$;f2(x)=(x-1)•$\sqrt{\frac{x+1}{x-1}}$;f3(x)=loga(x+$\sqrt{{x}^{2}+1}$),(a>0,a≠1);f4(x)=x•($\frac{1}{{2}^{x}-1}+\frac{1}{2}$),(x≠0),下面關(guān)于這四個(gè)函數(shù)奇偶性的判斷正確的是( 。
A.都是偶函數(shù)
B.一個(gè)奇函數(shù),一個(gè)偶函數(shù),兩個(gè)非奇非偶函數(shù)
C.一個(gè)奇函數(shù),兩個(gè)偶函數(shù),一個(gè)非奇非偶函數(shù)
D.一個(gè)奇函數(shù),三個(gè)偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案