7.下列函數(shù)中,不是偶函數(shù)的是(  )
A.y=x2+4B.y=|tanx|C.y=cos2xD.y=3x-3-x

分析 逐一判斷各個選項中所給函數(shù)的奇偶性,從而得出結(jié)論.

解答 解:對于所給的4個函數(shù),它們的定義域都關(guān)于原點對稱,
選項A、B、C中的函數(shù)都滿足f(-x)=f(x),故他們都是偶函數(shù),
對于選項D中的函數(shù),滿足f(-x)=-f(x),故此函數(shù)為奇函數(shù),
故選:D.

點評 本題主要考查函數(shù)的奇偶性的判斷方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在直角坐標(biāo)系xOy中,已知點A(4,2)和B(0,b)滿足|BO|=|BA|,那么b的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=-x2+2x-2,x∈[t,t+1],若f(x)的最小值為h(t),求h(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)U為全集,A,B是集合,則“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y+1}{x}$的最小值小于0,則實數(shù)a的取值范圍是a>$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=anan+1,Sn為數(shù)列{bn}的前n項和,對于任意的正整數(shù)n,Sn>2λ-$\frac{1}{3}$恒成立,求Sn及實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=($\sqrt{3}$,1),$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$,且A為銳角.
(1)求角A的大。
(2)求函數(shù)f(x)=cos2x+8sinAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ax+2(a-1)在區(qū)間(-1,2)內(nèi)存在零點,則實數(shù)a的取值范圍為( 。
A.$(-∞,\;\;\frac{1}{2})∪(2,\;\;+∞)$B.$(\frac{1}{2},\;\;2)$C.$(-∞,\;\;\frac{1}{2}]∪[2,\;\;+∞)$D.$[\frac{1}{2},\;\;2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知S,A,B,C都是球O表面上的點,SA⊥平面ABC,AB⊥BC,SA=2,AB=3,BC=4,則球O的表面積等于29π.

查看答案和解析>>

同步練習(xí)冊答案