相關(guān)習(xí)題
 0  226423  226431  226437  226441  226447  226449  226453  226459  226461  226467  226473  226477  226479  226483  226489  226491  226497  226501  226503  226507  226509  226513  226515  226517  226518  226519  226521  226522  226523  226525  226527  226531  226533  226537  226539  226543  226549  226551  226557  226561  226563  226567  226573  226579  226581  226587  226591  226593  226599  226603  226609  226617  266669 

科目: 來源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點(diǎn),且|AB|=2,則雙曲線的離心率e為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.定義在(0,+∞)的函數(shù)f(x)非負(fù)實(shí)數(shù),且滿足xf′(x)<f(x),若m,n∈(0,+∞)且m<n,則必有( 。
A.nf(n)<mf(m)B.nf(m)<mf(n)C.mf(m)<nf(n)D.mf(n)<nf(m)

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,四棱錐P-ABCD中,平面PAC⊥底面ABCD,BC=CD=$\frac{1}{2}$AC=2,$∠ACB=∠ACD=\frac{π}{3}$
(1)證明:AP⊥BD.
(2)若AP=$\sqrt{7}$,且三棱錐B-APC的體積為2時(shí),求二面角A-BP-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

11.設(shè)X是離散型隨機(jī)變量,其分布列為其中a≠0,b≠0,則$\frac{1}{a}$+$\frac{1}$的最小值為8
 X 0 1 2
 P a b $\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,且b=c,橢圓的上頂點(diǎn)到右頂點(diǎn)的距離為2$\sqrt{3}$.
(1)求橢圓的方程;
(2)已知點(diǎn)F是橢圓的右焦點(diǎn),C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為坐標(biāo)原點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使得AC|=|BC|,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=2acos2x+2$\sqrt{3}$bsinxcosx,且f(0)=2,f($\frac{π}{4}$)=$\sqrt{3}$+1.
(1)求f(x)的最大值及單調(diào)遞減區(qū)間;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.若對(duì)一切正實(shí)數(shù)x,t,不等式$\frac{t}{4}$-cos2x≥asinx-$\frac{9}{t}$都成立,則實(shí)數(shù)a的取值范圍是[-3,3].

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$,則cos(2x+$\frac{π}{4}$)=-$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.函數(shù)f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$),x∈[0,π],當(dāng)x=$\frac{π}{4}$時(shí),f(x)取到最大值為$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.設(shè)α是第三象限角,P(x,-4)是其終邊上一點(diǎn),且cosα=$\frac{x}{5}$,則x=-3,tanα=$\frac{4}{3}$,$\frac{cosα-sinα}{cosα+sinα}$=-$\frac{1}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案