相關(guān)習(xí)題
 0  228209  228217  228223  228227  228233  228235  228239  228245  228247  228253  228259  228263  228265  228269  228275  228277  228283  228287  228289  228293  228295  228299  228301  228303  228304  228305  228307  228308  228309  228311  228313  228317  228319  228323  228325  228329  228335  228337  228343  228347  228349  228353  228359  228365  228367  228373  228377  228379  228385  228389  228395  228403  266669 

科目: 來源: 題型:解答題

17.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點,且AB=EF=2,CD=6,M為EC中點,現(xiàn)將梯形ABCD沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是CD的中點.
(Ⅰ)求證:MN∥平面ADFE;
(Ⅱ)求四棱錐M-EFDA的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知底面為正三角形的三棱柱內(nèi)接于半徑為1的球,則三棱柱的體積的最大值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠DAB是直角,AB∥CD,AD=CD=2AB=2,E、F分別為PC、CD的中點.
(Ⅰ)試證:AB⊥平面BEF;
(Ⅱ)若VC-BEF=1,求PA的長.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),且a1,a2,a5是公比不等于1的等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,設(shè)數(shù)列{bn}的前n項和Sn,求證:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.雙曲線$\frac{y^2}{4}-{x^2}=1$的頂點到其漸近線的距離等于$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.過點A(0,1)作直線,與雙曲線${x^2}-\frac{y^2}{9}=1$有且只有一個公共點,則符合條件的直線的條數(shù)為( 。
A.0B.2C.4D.無數(shù)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知雙曲線C;$\frac{{y}^{2}}{^{2}+8}$-$\frac{{x}^{2}}{^{2}}$=1(b>0),點P是拋物線y2=12x上的一動點,且P到雙曲線C的焦點F1(0,c)的距離與直線x=-3的距離之和的最小值為5,則雙曲線C的實軸長為 ( 。
A.2$\sqrt{3}$B.4C.8D.4$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在三棱錐P-AMC中,AC=AM=PM=2,PM⊥面AMC,AM⊥AC,B,D分別為CM,AC的中點.
(Ⅰ)在PC上確定一點E,使得直線PM∥平面ABE,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,連接AE,與PD相交于點N,求三棱錐B-ADN的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.直角三角形ABC中,A=90°,B=60°,B,C為雙曲線E的兩個焦點,點A在雙曲線E上,則該雙曲線的離心率為( 。
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點為F,以F為圓心和雙曲線的漸近線相切的圓與雙曲線的一個交點為M,且MF與雙曲線的實軸垂直,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案