相關(guān)習(xí)題
 0  228399  228407  228413  228417  228423  228425  228429  228435  228437  228443  228449  228453  228455  228459  228465  228467  228473  228477  228479  228483  228485  228489  228491  228493  228494  228495  228497  228498  228499  228501  228503  228507  228509  228513  228515  228519  228525  228527  228533  228537  228539  228543  228549  228555  228557  228563  228567  228569  228575  228579  228585  228593  266669 

科目: 來源: 題型:解答題

13.已知圓O為單位圓:x2+y2=1,點A(1,0),B為單位圓上的動點,如圖,以AB為邊作正方形ABCD,求動點D的軌跡方程及OD的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

12.如圖,已知正四棱柱ABCD-A1B1C1D1的體積為36,點E,F(xiàn)分別為棱B1B,C1C上的點(異于端點),且EF∥BC,則四棱錐A1-AEFD的體積為12.

查看答案和解析>>

科目: 來源: 題型:填空題

11.如圖,是一個算法的程序框圖,當(dāng)輸出的y值為2時,若將輸入的x的所有可能值按從小到大的順序排列得到一個數(shù)列{an},則該數(shù)列的通項公式為an=an=3n-4.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知集合A={0,$\frac{π}{6$,$\frac{π}{4}$,$\frac{π}{3}$,$\frac{π}{2}$,$\frac{2π}{3}$,$\frac{3π}{4}$,$\frac{5π}{6}$,π}.現(xiàn)從集合A中隨機選取一個元素,則該元素的
余弦值為正數(shù)的概率為$\frac{4}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.某公司生產(chǎn)三種型號A,B,C的轎車,產(chǎn)量分別為1200輛,6000輛,2000輛.為檢驗該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣的方法抽取46輛進行檢驗,則型號A的轎車應(yīng)抽取6輛.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知圓O:x2+y2=9,點A(2,0),點P為動點,以線段AP為直徑的圓內(nèi)切于圓O,則動點P的軌跡方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過橢圓C的左焦點且傾斜角為60°的直線與圓x2+y2=a2相交,所得弦的長度為$\sqrt{7}$
(1)求橢圓C的方程;
(2)設(shè)橢圓C的上頂點為M,若直線l:y=kx+m與橢圓C交于兩點A,B(A,B都不是上頂點),且直線MA與MB的斜率之積為$\frac{3}{4}$.
(a)求證:直線l過定點;
(b)求△MAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.一個袋子中有k個紅球,4個綠球,2個黃球,這些球除顏色外其他完全相同.從中一次隨機取出2個球,每取得1個紅球記1分、取得1個綠球記2分、取得1個黃球記5分,用隨機變量X表示取到2個球的總得分,已知總得分是2分的概率為$\frac{1}{12}$.
(Ⅰ)求袋子中紅球的個數(shù);
(Ⅱ)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在極坐標(biāo)系中.點A(1,$\frac{π}{3}$),B(2,$\frac{π}{3}$).動點P滿足PA=$\frac{1}{2}$PB.則動點P軌跡的極坐標(biāo)方程為ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知△ABC的兩個頂點A,B的坐標(biāo)分別是(0,$\sqrt{3}$),(0,-$\sqrt{3}$),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點C的軌跡M的方程,并判斷軌跡M為何種曲線;
(2)當(dāng)m=-$\frac{3}{4}$時,點P(1,t)為曲線M上點,且點P為第一象限點,過點P作兩條直線與曲線M交于E,F(xiàn)兩點,直線PE,PF斜率互為相反數(shù),則直線EF斜率是否為定值,若是,求出定值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案