相關習題
 0  228612  228620  228626  228630  228636  228638  228642  228648  228650  228656  228662  228666  228668  228672  228678  228680  228686  228690  228692  228696  228698  228702  228704  228706  228707  228708  228710  228711  228712  228714  228716  228720  228722  228726  228728  228732  228738  228740  228746  228750  228752  228756  228762  228768  228770  228776  228780  228782  228788  228792  228798  228806  266669 

科目: 來源: 題型:解答題

13.已知cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$)
(1)求tanθ的值;                          
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.tan74°tan14°+$\frac{{\sqrt{3}}}{3}$(tan14°-tan74°)=-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.$-\frac{29π}{6}$是( 。
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目: 來源: 題型:填空題

10.在鈍角△ABC中,∠A為鈍角,令$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow$=$\overrightarrow{AC}$,若$\overrightarrow{AD}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R).現(xiàn)給出下面結論:
①當x=$\frac{1}{3},y=\frac{1}{3}$時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為S△ABD,S△ACD,當x=$\frac{4}{5},y=\frac{3}{5}$時,$\frac{{{S_{△ABD}}}}{{{S_{△ACD}}}}=\frac{3}{4}$;
③若點D在△ABC內(nèi)部(不含邊界),則$\frac{y+1}{x+2}$的取值范圍是$(\frac{1}{3},1)$;
④若$\overrightarrow{AD}$=λ$\overrightarrow{AE}$,其中點E在直線BC上,則當x=4,y=3時,λ=5.
其中正確的有①②③(寫出所有正確結論的序號).

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ 1≤x≤3\\ y≥1\end{array}\right.$,則z=x+y的最大值是9.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.一艘輪船從A出發(fā),沿南偏東70°的方向航行40海里后到達海島B,然后從B出發(fā),沿北偏東35°的方向航行了40$\sqrt{2}$海里到達海島C.如果下次航行直接從A出發(fā)到C,此船航行的方向和路程(海里)分別為( 。
A.北偏東80°,20($\sqrt{6}$+$\sqrt{2}$)B.北偏東65°,20($\sqrt{3}$+2)C.北偏東65°,20($\sqrt{6}$+$\sqrt{2}$)D.北偏東80°,20($\sqrt{3}$+2)

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知三角形△ABC中,角A,B,C的對邊分別為a,b,c,若a=5,b=8,C=60°,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=( 。
A.-20$\sqrt{3}$B.-20C.20D.20$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.設命題p:?x0∈R,${x_0}^2+2m{x_0}+2+m=0$,
命題q:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題q為真命題,求實數(shù)m的取值范圍;
(3)求使“p∨q”為假命題的實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知復數(shù)${z_1}=\frac{3}{a+2}+({a^2}-3)i$,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若z1∈R,求a的值;
(2)若復數(shù)z1-z2在復平面上對應點落在第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

4.若a、b、c都是正數(shù),且a+b+c=2,則$\frac{4}{a+1}$+$\frac{1}{b+c}$的最小值為3.

查看答案和解析>>

同步練習冊答案