相關(guān)習(xí)題
 0  228779  228787  228793  228797  228803  228805  228809  228815  228817  228823  228829  228833  228835  228839  228845  228847  228853  228857  228859  228863  228865  228869  228871  228873  228874  228875  228877  228878  228879  228881  228883  228887  228889  228893  228895  228899  228905  228907  228913  228917  228919  228923  228929  228935  228937  228943  228947  228949  228955  228959  228965  228973  266669 

科目: 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$(3an-1).?dāng)?shù)列{bn}為等差數(shù)列,b1=a1,b2=a3
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四邊形ABCD為菱形,EB⊥平面ABCD,EF∥BD,EF=$\frac{1}{2}$BD.
(Ⅰ)求證:DF∥平面AEC;
(Ⅱ)求證:平面AEF⊥平面AFC.

查看答案和解析>>

科目: 來源: 題型:填空題

5.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}}$,則z=($\frac{1}{2}$)2x-y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知A,B為圓C:(x-a)2+(y-b)2=9(a,b∈R)上的兩個(gè)不同的點(diǎn),且滿足|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=2$\sqrt{2}$,則|$\overrightarrow{AB}$|=( 。
A.1B.$\sqrt{7}$C.2D.2$\sqrt{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知p,q為命題,則“p∨q為假”是“p∧q為假”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

2.下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)上是單調(diào)遞減的函數(shù)為( 。
A.y=$\sqrt{x}$B.y=-x3C.y=${log_{\frac{1}{2}}}$xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位),則(  )
A.z的實(shí)部為2B.z的虛部為iC.$\overline z$=1+iD.|z|=$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知全集U=R,集合A={x|(x+2)(x-2)≤0},則集合∁RA=( 。
A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)n(an•${2^{a_n}}$+$\frac{1}{{\sqrt{{a_{n+1}}}-\sqrt{a_n}}}$),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,0<x<2}\\{-cos(\frac{π}{2}x),2≤x≤6}\end{array}}$若存在互不相等的實(shí)數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),則x1•x2•x3•x4的取值范圍是(12,15).

查看答案和解析>>

同步練習(xí)冊(cè)答案