相關(guān)習(xí)題
 0  229056  229064  229070  229074  229080  229082  229086  229092  229094  229100  229106  229110  229112  229116  229122  229124  229130  229134  229136  229140  229142  229146  229148  229150  229151  229152  229154  229155  229156  229158  229160  229164  229166  229170  229172  229176  229182  229184  229190  229194  229196  229200  229206  229212  229214  229220  229224  229226  229232  229236  229242  229250  266669 

科目: 來源: 題型:選擇題

15.已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在其準(zhǔn)線上的射影是點(diǎn)M,點(diǎn)A的坐標(biāo)(4,2),則|PA|+|PM|的最小值是( 。
A.$\sqrt{17}$B.$\sqrt{13}$C.3D.2

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分別為CC1和A1B1的中點(diǎn),且A1A=AC=2AB=2.
(1)求證:C1E∥平面A1BD;
(2)求三棱錐C1-A1BD的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.用數(shù)學(xué)歸納法證明不等$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$>$\frac{23}{24}$(n≥2)的過程中,由n=k遞推到n=k+1時(shí),不等式左邊(  )
A.增加了一項(xiàng)$\frac{1}{2(k+1)}$B.增加了一項(xiàng)$\frac{1}{2k+1}+\frac{1}{2(k+1)}$
C.增加了$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又減少了$\frac{1}{k+1}$D.增加了 $\frac{1}{2(k+1)}$,又減少了$\frac{1}{k+1}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.四棱錐P-ABCD的直觀圖與三視圖如圖,PC⊥面ABCD
(1)畫出四棱錐P-ABCD的側(cè)視圖(標(biāo)注長(zhǎng)度)
(2)求三棱錐A-PBD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖所示,已知在四棱錐P-ABCD中,底面ABCD為直角梯形,其中CD∥AB,AD⊥AB,側(cè)棱PA⊥底面ABCD,且AD=DC=PA=$\frac{1}{2}$AB=1.
(Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)設(shè)點(diǎn)M為PB中點(diǎn),求四面體M-PAC的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為1的球面上,球心O在AB上,SO⊥底面ABC,$AC=\sqrt{2}$,則此三棱錐的體積為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,連接A1C,BD.
(1)求三棱錐A1-BCD的體積
(2)求證:BD⊥平面A1AC.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(Ⅰ)求證:D1E⊥底面ABCD;
(Ⅱ)若直線BD1與平面ABCD所成的角為$\frac{π}{3}$,求四棱錐D1-ABED體積.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖1,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CC1=AB=AC=2,∠BAC=90°,D為BC的中點(diǎn).
(Ⅰ)(圖2)給出了該三棱柱三視圖中的正視圖,請(qǐng)據(jù)此在框內(nèi)對(duì)應(yīng)位置畫出它的側(cè)視圖;
(Ⅱ)求證:A1C∥平面AB1D;
(Ⅲ)若點(diǎn)P是線段A1C上的動(dòng)點(diǎn),求三棱錐P-AB1D的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設(shè)BD與AC相交于點(diǎn)G,H為FG的中點(diǎn).
(1)證明:BD⊥CH;
(2)若$AB=BD=2,AE=\sqrt{3},CH=\frac{{\sqrt{3}}}{2}$;
①求三棱錐F-BDC的體積.
②求二面角B-DF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案