相關(guān)習(xí)題
 0  230255  230263  230269  230273  230279  230281  230285  230291  230293  230299  230305  230309  230311  230315  230321  230323  230329  230333  230335  230339  230341  230345  230347  230349  230350  230351  230353  230354  230355  230357  230359  230363  230365  230369  230371  230375  230381  230383  230389  230393  230395  230399  230405  230411  230413  230419  230423  230425  230431  230435  230441  230449  266669 

科目: 來源: 題型:填空題

6.已知定義域為R的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=lnx,則函數(shù)g(x)=f(x)-sin4x的零點的個數(shù)為7.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在等腰直角三角形ABC中,已知AB=AC=1,E,F(xiàn)分別是邊AB,AC上的點,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1)且m+2n=1,若EF,BC的中點分別為M,N,則|$\overrightarrow{MN}$|的最小值是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.運行如圖所示的程序框圖,則輸出的S的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( 。
A.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向左平移$\frac{π}{6}$個單位
B.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向右平移$\frac{π}{6}$個單位
C.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的$\frac{1}{2}$,然后再向右平移$\frac{π}{12}$個單位
D.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的$\frac{1}{2}$,然后再向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G是線段BE的中點,點F在線段CD上且GF∥平面ADE.
(Ⅰ)求CF長;
(Ⅱ)求平面AEF與平面AFG的夾角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點,過B、C分別作AC、AB的垂線,兩垂線交于點D.若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是( 。
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

20.一個幾何體的三視圖如圖,則該幾何體的體積為( 。
A.32+$\frac{16π}{3}$B.32+$\frac{64π}{3}$C.64+$\frac{16π}{3}$D.64+$\frac{64π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x2≥6x},B={x|2x2-x-1>0,x∈Z},則(∁UA)∩B( 。
A.[1,6]B.(1,6)C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)D為△ABC所在平面內(nèi)一點,且$\overrightarrow{BD}$=3$\overrightarrow{CD}$,則( 。
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{3}{2}$$\overrightarrow{AC}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列各組向量中能作為表示它們所在平面內(nèi)的所有向量的基底的是( 。
A.$\overrightarrow{a}$=(0,0),$\overrightarrow$=(1,-2)B.$\overrightarrow{a}$=(3,2),$\overrightarrow$=(6,4)C.$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(5,7)D.$\overrightarrow{a}$=(-3,-1),$\overrightarrow$=(3,1)

查看答案和解析>>

同步練習(xí)冊答案