相關習題
 0  230407  230415  230421  230425  230431  230433  230437  230443  230445  230451  230457  230461  230463  230467  230473  230475  230481  230485  230487  230491  230493  230497  230499  230501  230502  230503  230505  230506  230507  230509  230511  230515  230517  230521  230523  230527  230533  230535  230541  230545  230547  230551  230557  230563  230565  230571  230575  230577  230583  230587  230593  230601  266669 

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{2a{x}^{2}+bx+1}{{e}^{x}}$(e為自然對數(shù)的底數(shù)).
(1)若a=$\frac{1}{2}$,求函數(shù)f(x)的單調區(qū)間;
(2)若f(1)=1,且方程f(x)=1在(0,1)內有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知變量x,y的取值如表所示:
x456
y867
如果y與x線性相關,且線性回歸方程為$\hat y=\hat bx+2$,則$\hat b$的值為( 。
A.1B.$\frac{3}{2}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)=|log3(x+1)|,實數(shù)m,n滿足-1<m<n,且f(m)=f(n).若f(x)在[m2,n]上的最大值為2,則$\frac{n}{m}$=( 。
A.-6B.-8C.-9D.-12

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,在平面直角坐標系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點A(2,1),離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓相交于B,C兩點(異于點A),線段BC被y軸平分,且AB⊥AC,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知偶函數(shù)f(x)是定義在R上的可導函數(shù),其導函數(shù)為f′(x),當x<0時有2f(x)+xf′(x)>x2,C,則不等式(x+2014)2f(x+2014)-4f(-2)<0的解集為( 。
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知f(x)為定義在(0,+∞)上的可導函數(shù),且f(x)>xf′(x)恒成立,則不等式x2f($\frac{1}{x}$)-f(x)>0的解集為( 。
A.(0,1)B.(1,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$
(1)當$0<a<\frac{1}{2}$時,討論f(x)的單調性
(2)設g(x)=x2-2bx+4.當$a=\frac{1}{4}$時,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD是邊長為3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大。

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=mx-$\frac{m-1}{x}$-lnx,m∈R.函數(shù)g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上為增函數(shù),且0∈[0,$\frac{π}{2}$)
(I)當m=3時,求f(x)在點P(1,f(1))處的切線方程;
(Ⅱ)求θ的取值;
(Ⅲ)若h(x)=f(x)-g(x)在其定義域上為單調函數(shù),求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設x,y,z,w∈R,且滿足x2+y2+z2+w2=1,則P=xy+2yz+zw的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

同步練習冊答案