相關(guān)習(xí)題
 0  231055  231063  231069  231073  231079  231081  231085  231091  231093  231099  231105  231109  231111  231115  231121  231123  231129  231133  231135  231139  231141  231145  231147  231149  231150  231151  231153  231154  231155  231157  231159  231163  231165  231169  231171  231175  231181  231183  231189  231193  231195  231199  231205  231211  231213  231219  231223  231225  231231  231235  231241  231249  266669 

科目: 來源: 題型:解答題

9.證明:數(shù)列{$\frac{1}{n(n+1)}$}是遞減數(shù)列.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知數(shù)列{an},滿足a1=1,3(a1+a2+a3+…+an)=(n+2)an對任意正整數(shù)n都成立,則a4=10.

查看答案和解析>>

科目: 來源: 題型:解答題

7.求下列各式中x的值.
(1)log8x=-$\frac{2}{3}$;
(2)logx27=$\frac{3}{4}$;
(3)ax=1(a>0且a≠1);
(4)5lgx=25;
(5)log7[log3(log2x)]=0.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,A,B是圓O上兩點,延長AB至點C,滿足AB=2BC=2,過C作直線CD與圓O相切于點D,∠ADB的平分線交AB于點E.
(I)求AE的長;
(II)若∠DBA=60°,求△BDE的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知x,y∈R,向量α=$[\begin{array}{l}{-1}\\{1}\end{array}]$是矩陣A=$[\begin{array}{l}{-1}&{x}\\{y}&{0}\end{array}]$的屬于特征值-2的一個特征向量.
(1)求矩陣A以及它的另一個特征值;
(2)求曲線F:9x2-2xy+y2=1在矩陣A對應(yīng)的變換作用下得到的曲線F′的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B,C兩點,弦CD∥AP,AD,BC相交于點E,F(xiàn)為CE上一點,且DE2=EF•EC.
(Ⅰ)求證:∠EDF=∠P;
(Ⅱ)若CE:BE=3:2,DE=3,EF=2,求PA的長.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知點P在曲線C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\\{\;}\end{array}\right.$(θ為參數(shù))上,直線 l:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t為參數(shù)),求P到直線l距離的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cos?\\ y=2sin?\end{array}$(?為參數(shù),且0≤?<2π),曲線l的極坐標(biāo)方程為ρ=$\frac{2-3k}{2sinθ-2kcosθ}$(k是常數(shù),且k∈R).
(Ⅰ)求曲線C的普通方程和曲線l直角坐標(biāo)方程;
(Ⅱ)若曲線l被曲線C截的弦是以($\frac{3}{2}$,1)為中點,求k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=2x3-9x2+12x+8.求:
(1)函數(shù)f(x)的極值;
(2)函數(shù)在區(qū)間[-1,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案