相關(guān)習(xí)題
 0  231107  231115  231121  231125  231131  231133  231137  231143  231145  231151  231157  231161  231163  231167  231173  231175  231181  231185  231187  231191  231193  231197  231199  231201  231202  231203  231205  231206  231207  231209  231211  231215  231217  231221  231223  231227  231233  231235  231241  231245  231247  231251  231257  231263  231265  231271  231275  231277  231283  231287  231293  231301  266669 

科目: 來(lái)源: 題型:解答題

9.若函數(shù)f(x)=sinax-cosax(a>0)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為π.
(1)求函數(shù)y=f(x)的解析式;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,若$f(\frac{B}{2})=\sqrt{2}$,且a、b、c成等比數(shù)列,b=2,求△ABC的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3}{x}-x+alnx$,且x=3是函數(shù)f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求a的值;(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=f(x)-m,討論函數(shù)y=g(x)在區(qū)間(0,5]上零點(diǎn)的個(gè)數(shù)?
(參考數(shù)據(jù):ln5≈1.61,ln3≈1.10).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)若h(x)=f(x)-2x,當(dāng)a=-3時(shí),求h(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有唯一的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.函數(shù)f(x)=4sinxcosx+2cos2x-1的最小正周期為π,最大值為$\sqrt{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.已知|x|≤$\frac{π}{4}$,求函數(shù)y=2-4cosx-3sin2x的值域.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(-ax2-2x+a)•ex(a∈R).
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)P(x)=x+a,q(x)=lnx,f(x)=p(x)q(x)-p(x)+2a.
(Ⅰ)設(shè)g(x)=f′(x),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0時(shí),q(2x+1)≤2ap(x)-2a2+a+1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)已知任意a>0,存在0<x<a,使得a+xlnx>0.試研究a>0時(shí)函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.已知正整數(shù)對(duì)按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2)(4,1),…,則第160個(gè)數(shù)對(duì)是(7,12).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=x3-6x+5,x∈R,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$目標(biāo)函數(shù)z=6x+2y的最小值是10,則z的最大值是( 。
A.20B.22C.24D.26

查看答案和解析>>

同步練習(xí)冊(cè)答案