相關(guān)習(xí)題
 0  231389  231397  231403  231407  231413  231415  231419  231425  231427  231433  231439  231443  231445  231449  231455  231457  231463  231467  231469  231473  231475  231479  231481  231483  231484  231485  231487  231488  231489  231491  231493  231497  231499  231503  231505  231509  231515  231517  231523  231527  231529  231533  231539  231545  231547  231553  231557  231559  231565  231569  231575  231583  266669 

科目: 來(lái)源: 題型:填空題

13.若圓C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4個(gè)點(diǎn)到直線x-y+a=0的距離為$\frac{1}{2}$,則實(shí)數(shù)a的取值范圍為($-\frac{1}{2}-2\sqrt{2},-\frac{1}{2}+2\sqrt{2}$).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知圓C過(guò)點(diǎn)M(0,-$\frac{1}{2}$),且與直線l:y=$\frac{1}{2}$相切.
(I)求圓心C的軌跡方程;
(Ⅱ)設(shè)軌跡與過(guò)點(diǎn)N(0,-1)的直線m相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA和OB的斜率之和為1,求直線m的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.若圓C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4個(gè)點(diǎn)到直線x-y+a=0的距離為$\frac{1}{2}$,則實(shí)數(shù)a的取值范圍為( 。
A.(-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$)B.[-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$]C.(-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$)D.[-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$]

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.已知過(guò)點(diǎn)P(1,1)的直線l1,l2的斜率分別為k1,k2,圓O以原點(diǎn)為圓心,2為半徑,直線l1交圓O于點(diǎn)M,N,直線l2交圓O于點(diǎn)P、Q,若$\frac{|MN|}{|PQ|}$=$\frac{\sqrt{6}}{2}$,且k1+k2=0,則k1k2等于( 。
A.1B.-$\frac{1}{9}$C.-9D.-$\frac{1}{9}$或-9

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+y2=4和直線l:14x+8y-23=0.
(1)求圓C1關(guān)于直線l對(duì)稱的圓C2的方程;
(2)設(shè)P為平面上的點(diǎn),且存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=PB,AD=DB,則( 。
A.PD?平面ABCB.PD⊥平面ABC
C.PD與平面ABC相交但不垂直D.PD∥平面ABC

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx.
(I)求函數(shù)g(x)=x-1-f(x)的極小值;
(Ⅱ)證明:當(dāng)x∈[1,+∞)時(shí),不等式$\frac{f(x)}{2}≥\frac{x-1}{x+1}$恒成立;
(Ⅲ)已知a∈(0,$\frac{π}{2}$),試比較f(tana)與2tan(a-$\frac{π}{4}$)的大小,并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=lnx.
(I)求函數(shù)g(x)=x-1-f(x)的極小值;
(Ⅱ)若關(guān)于x的不等式mf(x)≥$\frac{x-1}{x+1}$在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)已知a∈(0,$\frac{π}{2}$),試比較f(tana)與-cos2a的大小,并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.求經(jīng)過(guò)圓x2+y2-4x-2y-5=0的圓心且與直線3x-4y+6=0垂直的直線方程.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.已知a,b均為大于1的自然數(shù),若圓心在原點(diǎn)的單位圓O上存在點(diǎn)(x0,y0),使得b+x0=a(b+y0)成立.則a+b=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案