相關(guān)習題
 0  231665  231673  231679  231683  231689  231691  231695  231701  231703  231709  231715  231719  231721  231725  231731  231733  231739  231743  231745  231749  231751  231755  231757  231759  231760  231761  231763  231764  231765  231767  231769  231773  231775  231779  231781  231785  231791  231793  231799  231803  231805  231809  231815  231821  231823  231829  231833  231835  231841  231845  231851  231859  266669 

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1-a+lnx}{x}$,a∈R.
(1)求f(x)的極值;
(2)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范圍;
(3)當正整數(shù)n>8時,比較${({\sqrt{n}})^{\sqrt{n+1}}}$與${({\sqrt{n+1}})^{\sqrt{n}}}$的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當x=1時f(x)取得極值-2.
(1)求a,c,d的值,并求f(x)的極大值;
(2)證明對任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

科目: 來源: 題型:填空題

19.方程(x+2)(x+4)(x+6)(x+8)=105的解是x=-1,或x=-9.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知α、β是方程x2+x+a=0的兩個實數(shù)根.
(1)求a的取值范圍
(2)試用a表示|α|+|β|.

查看答案和解析>>

科目: 來源: 題型:解答題

17.設(shè)F1(-c,0),F(xiàn)2(c,0)分別為橢圓E:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4-m}$=1的左、右焦點.
(1)若橢圓的離心率是$\frac{\sqrt{6}}{3}$,求橢圓的方程,并寫出m的取值范圍;
(2)設(shè)P(x0,y0)為橢圓E上一點,且在第一象限內(nèi),直線F2P與y軸相交于點Q,若以PQ為直徑的圓經(jīng)過點F1,證明:點P在直線x+y-2=0上.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)證明:當x>0時,曲線y=x2恒在曲線y=ex的下方;
(3)討論函數(shù)g(x)=x2-aex(a∈R)零點的個數(shù).
參考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.如圖所示,E是正方形ABCD所在平面外一點,E在面ABCD上的正投影F恰在AC上,F(xiàn)G∥BC,AB=AE=2,∠EAB=60°,有以下四個命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)P(x0,y0)是曲線y=f(x)上的任意一點,若以P(x0,y0)為切點的切線的斜率k≤$\frac{1}{2}$恒成立,求實數(shù)a的最小值;
(3)若關(guān)于x的方程$\frac{{x}^{3}+2(bx+a)}{2x}$=f(x)+$\frac{1}{2}$在區(qū)間(0,e)上有兩個不相等的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的漸近線方程為( 。
A.4x±9y=0B.9x±4y=0C.3x±2y=0D.2x±3y=0

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\sqrt{2-\frac{x+6}{x+2}}$的定義域為A,B={x|x2-(m+3)x+3m<0,m∈R}.
(1)若(∁RA)∩B=(1,2),求實數(shù)m的值;
(2)若A∪B=A,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案