相關(guān)習(xí)題
 0  231790  231798  231804  231808  231814  231816  231820  231826  231828  231834  231840  231844  231846  231850  231856  231858  231864  231868  231870  231874  231876  231880  231882  231884  231885  231886  231888  231889  231890  231892  231894  231898  231900  231904  231906  231910  231916  231918  231924  231928  231930  231934  231940  231946  231948  231954  231958  231960  231966  231970  231976  231984  266669 

科目: 來源: 題型:解答題

5.設(shè)常數(shù)a>0,λ∈R,函數(shù)f(x)=x2(x-a)-λ(x+a)3,若函數(shù)f(x)恰有兩個(gè)零點(diǎn),求λ的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.下列結(jié)論一定正確的是(  )
A.圓心角為1弧度的扇形的弧長都相等
B.角α是第四象限角,則2kπ-$\frac{π}{2}$<α<2kπ(k∈Z)
C.第二象限的角比第一象限的角大
D.第一象限的角是銳角

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{1-x}(x≥1)}\\{{x}^{3}-3x+2(x<1)}\end{array}\right.$,且方程f(x)=a有兩個(gè)不同實(shí)根,則實(shí)數(shù)a范圍是( 。
A.(-∞,0)B.(0,1)C.(1,5)D.[1,4)

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數(shù)f(x)=lnx-ax2+ax有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為a>0且a≠1.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若一個(gè)函數(shù)恰有兩個(gè)零點(diǎn),則稱這樣的函數(shù)為“雙胞胎”函數(shù),若函數(shù)f(x)=|ax-lnx+$\frac{a-1}{x}$|-a-3(a<0)為“雙胞胎”函數(shù),則實(shí)數(shù)a的取值范圍為(-$\frac{2}{3}$,0).

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知?jiǎng)訄AM的圓心M在y軸右側(cè),且動(dòng)圓M與圓(x-1)2+y2=1外切,與y軸相切.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)G(m,0)(m>0)為曲線E內(nèi)的一定點(diǎn),過點(diǎn)G作兩條直線l1,l2分別交曲線E于點(diǎn)A、B與點(diǎn)C、D,且P、Q分別是AB、CD的中點(diǎn),若l1,l2的斜率之和為1,求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目: 來源: 題型:解答題

19.在長方體中,|OA|=6,|OC|=8,|OD′|=4,
(1)寫出A′、B′、C、C′、D′四點(diǎn)的坐標(biāo);
(2)求出AC′的長.
(3)求AC′與BB′所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.如圖是容量為n的樣本的頻率分布直方圖,已知樣本數(shù)據(jù)在[14,18)內(nèi)的頻數(shù)是12,則樣本數(shù)據(jù)落在[6,10)的頻數(shù)是( 。
A.12B.16C.18D.20

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在121個(gè)學(xué)生中,一年級(jí)有25人,二年級(jí)有36人,三年級(jí)有60個(gè),現(xiàn)抽取容量為20的樣本.用系統(tǒng)抽樣法:先隨機(jī)去掉一人,再從剩余人員中抽取容量為20的樣本,整個(gè)過程中每個(gè)體被抽取到的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{36}$
C.$\frac{20}{121}$D.不能確定,與去掉的人有

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若lg2=a,lg3=b,則$\frac{lg12}{lg15}$等于(  )
A.$\frac{2a+b}{1-a+b}$B.$\frac{2a+b}{1+a+b}$C.$\frac{a+2b}{1-a+b}$D.$\frac{a+2b}{1+a+b}$

查看答案和解析>>

同步練習(xí)冊答案