相關習題
 0  234119  234127  234133  234137  234143  234145  234149  234155  234157  234163  234169  234173  234175  234179  234185  234187  234193  234197  234199  234203  234205  234209  234211  234213  234214  234215  234217  234218  234219  234221  234223  234227  234229  234233  234235  234239  234245  234247  234253  234257  234259  234263  234269  234275  234277  234283  234287  234289  234295  234299  234305  234313  266669 

科目: 來源: 題型:選擇題

1.cos105°cos45°+sin45°sin105°的值( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知三個共面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=(  )
A.5B.$\sqrt{3}$C.5或6D.6或$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.在整數(shù)Z中,被7除所得余數(shù)為r的所有整數(shù)組成的一個“類”,記作[r],即[r]={7k+r|k∈Z},其中r=0,1,2,…6.給出如下五個結(jié)論:
①2016∈[1];
②-3∈[4];
③[3]∩[6]=?; 
④z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6];
⑤“整數(shù)a,b屬于同一“類””的充要條件是“a-b∈[0].”
其中,正確結(jié)論的個數(shù)是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{p{x}^{2}+2}{q-3x}$是奇函數(shù),且f(2)=-$\frac{5}{3}$
(1)求函數(shù)f(x)的解析式
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.若f(x)為偶函數(shù),且在(-∞,0)單調(diào)遞增,則下列關系式中成立的是( 。
A.f(-$\frac{3}{2}$)<f(-1)<f(2)B.f(-1)<f($\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(-2)<f($\frac{3}{2}$)<f(-1)

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知函數(shù)f(x)=log0.5(x+$\frac{1}{x}$),下列說法:
(1)f(x)的定義域為(0,+∞);
(2)f(x)的值域為[-1,+∞);
(3)f(x)是奇函數(shù);
(4)f(x)在(0,1)上單調(diào)遞增.
其中說法正確的是(1)(4).

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知鈍角△ABC的面積是$\frac{\sqrt{3}}{4}$,AB=1,BC=$\sqrt{3}$,則AC=( 。
A.1B.$\sqrt{7}$C.$\sqrt{7}$或1D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設等差數(shù)列{an},{bn}的前n項之和分別為Sn、Tn.若對任意n∈N*有①(n+3)Sn=(3n+1)Tn;②a${\;}_{{n}^{2}+27}$≥λ•bn均恒成立,且存在n0∈N*,使得實數(shù)λ有最大值,則n0=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目: 來源: 題型:解答題

13.在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點,求證:GH∥平面ABC.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn=n2-4n,求數(shù)列{an}的通項an

查看答案和解析>>

同步練習冊答案